
Technical Report
CMU/SEI-96-TR-006
ESC-TR-96-006

Carnegie-Mellon University

"•- Software Engineering Institute

An Architectural Description

of the

Simplex Architecture

Josd German Rivera

Alejandro Andrds Danylyszyn

Charles B. Weinstock

Lui R. Sha

Michael J. Gagliardi

March 1996

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000,

Technical Report
CMU/SEI-96-TR-006

ESC-TR-96-006

March 1996

An Architectural Description
of the

Simplex Architecture

Jos6 Germdn Rivera

Alejandro Andr6s Danylyszyn

Charles B. Weinstock

Lui R. Sha

Michael J. Gagliardi

Dependable Real-Time Systems

19960509 054
Approved for public release.

Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF

SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should be
addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIM-
ITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR RE-
SULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADE-
MARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Car-
negie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center. The Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for
government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://wwwrai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Com-
merce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center, Atm: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1

2 Requirements for Motion Control Simplex 3
2.1 Top Level Requirements 3
2.2 Requirements Analysis 3

2.2.1 Making Changes Safe 3
2.2.2 Making Changes Easy 5
2.2.3 Making Development Faster 7
2.2.4 Using Standardized and COTS Components 7

2.3 A Uni-Processor Example 7

3 System Behavior 9

3.1 Assumptions 9
3.2 Abstraction Techniques 11
3.3 FDR Model Checking Guidelines 13
3.4 Definitions 13
3.5 Preliminary Model 15
3.6 Final Model 18

3.6.1 Process Definitions 18
3.6.2 Properties Verified 21
3.6.3 FDR Verification Results 23
3.6.4 Corrections to the Model 24

4 Software Architecture 27
4.1 Graphical Representation 27
4.2 Wright Specification 28

4.2.1 Process Types 30
4.2.2 DistributionTag Connector 31
4.2.3 Procedure Call Connector 33
4.2.4 Upgrade Manager Component 33
4.2.5 Decision Component 35
4.2.6 Safety Controller Component 37
4.2.7 Untrusted Controller Component 38
4.2.8 Physical I/O Component 38

5 Conclusions 41

6 Acknowledgments 43

CMU/SEI-96-TR-006

Appendix A CSP Models of Simplex 45
A.1 CSP Model Without Upgrade Manager 45
A.2 First Attempt at a CSP Model with Upgrade Manager 49
A.3 Final Attempt at a CSP Model with Upgrade Manager 55

CMU/SEI-96-TR-006

List of Figures

Figure 1: The Software Hazard Space 4
Figure 2: Simplex Architecture Unit Relationships 8
Figure 3: Simplex Context Diagram 9
Figure 4: Preliminary Model 16
Figure 5: Final Model 18
Figure 6: Software Architecture Excluding Connections to the

Upgrade Manager 27
Figure 7: Software Architecture Showing Connections to the

Upgrade Manager 28

CMU/SEI-96-TR-006

iv
CMU/SEI-96-TR-cjo6

List of Tables

Table 1: Simplex Events 13
Table 2: Channel Alphabet 15

CMU/SEI-96-TR-006

vi CMU/SEI-96-TR-006

An Architectural Description of the
Simplex Architecture

Abstract: Simplex is a software architecture for dependable and evolvable
process-control systems developed by the Software Engineering Institute. Our
project consisted of creating a formal specification of this architecture, and
analyzing its safety and liveness properties. We developed a Communicating
Sequential Processes (CSP) model to describe the overall dynamic behavior of
the Simplex architecture, which we verified using the Failure-Divergence-
Refinement (FDR) model checker. As a result, we discovered interesting things
about the use of FDR that revealed subtle points in the Simplex architecture.
We also developed a WRIGHT specification of this architecture to characterize
precisely the connections between its components at the architectural level.
The specification was based on the latest version of the CSP model.

Introduction

The Simplex architecture is a family of high level application development platforms (middle-
ware) that has been designed to support the online evolution of software intensive systems
specialized to a specific domain. From the perspective of application developers, it is a collec-
tion of online software modification facilities, real time process management and communica-
tion facilities, and fault tolerant facilities. In addition, there is a set of application program
interfaces (API) that users follow in order to achieve the benefits of easier and safer online
software evolution. The Simplex architecture is a technology that is still being matured. Three
prototypes of Simplex architecture have been built: a uni-processor motion control prototype,
a fault tolerant group motion control prototype, and a radar tracking prototype. Currently, a
fourth prototype that supports motion coordination and multi-media communication over local
area networks is being designed.

The ideas embodied in the Simplex architecture are likely to be applicable to other domains,
though the specifics of implementation would change. A more precise definition of the Simplex
architecture will make it easier to understand its properties and for others to adopt it.

One promising technique for precisely describing the architecture is through the use of an Ar-
chitectural Description Language (ADL). This paper reports the results of an attempt to use
Communicating Sequential Processes (CSP) and the Wright ADL to describe the relatively
simple uni-processor Simplex prototype. The attempt was largely successful, although a few
problems arose because of the real-time requirements of Simplex.

This report is organized as follows. In Section 2, we examine the basic requirements of the
Simplex architecture for motion control. Sections 3 and 4 present the Architectural descrip-
tions of the Simplex architecture. In Section 3 we present two models of the system behavior
and the properties verified. The abstraction techniques and assumptions are also detailed so

CMU/SEI-96-TR-006 1

the reader can understand the models and the scope of this work. In Section 4 we present an
architectural model of Simplex. In Section 5 we review both the successes and failures of this
effort. In particular we examine the difficulties of dealing with real-time fault-tolerant systems
using the Wright ADL and CSP.

2 CMU/SEI-96-TR-006

2 Requirements for Motion Control Simplex

Before we attempt to use an ADL to describe the Simplex architecture, it is helpful to discuss

the requirements that an instance of the Simplex architecture must meet. The Simplex archi-

tecture is designed to make software changes safer, easier, and cheaper. As mentioned in the
introduction, the ideas behind Simplex can be applied to many domains. Our initial domain of

application was in the area of motion control. In this section we discuss the requirements for

using the Simplex architecture in a motion control environment.

2.1 Top Level Requirements

The Simplex architecture was developed to offer a safe and easy way of upgrading a system
while it is in operation. The prototype illustrates its use in providing the ability to perform a safe
upgrade of an unstable motion system without shutdown. The requirements that led to the de-
velopment of the Simplex architecture are:

1. To make changes safer, i.e., to allow the control system to be changed online
safely.

2. To make changes easier, i.e., to provide developers with replaceable units
that can be modified and replaced online and with facilities to make the
change simple.

3. To make the system development faster by providing developers with real-
time scheduling and communication facility, fault tolerance facility, and gener-
ic motion control utilities such as sequencing control and transaction facilities
for ordering and coordinating actions.

4. To lower the system cost by using standard components and popular com-
mercial-of-the-shelf (COTS) components when applicable.

2.2 Requirements Analysis

From the viewpoint of a designer, an architecture specifies an envelope of alternative designs.
Each of these designs will have its own characteristics and can meet the requirements. To un-

derstand how the requirements constrain the design space, we examine each requirement in
turn, and consider its effects on design decisions such as the fault tolerance mechanisms em-
ployed, the selection of development platforms, the type of communication facilities required,
scheduling disciplines, etc.

2.2.1 Making Changes Safe

To ensure safety and an acceptable level of performance in spite of errors introduced during
changes to application software, we need to ensure the timely execution of monitoring and fall
back software and protect it from being corrupted. To this end, we need to defend against soft-

ware faults that could compromise the execution of monitoring and fall back software. The

CMU/SEI-96-TR-006 3

technique we use to achieve this requirement is known as analytic redundancy. This technique

uses a proven simple and reliable safety controller as backup for the newly installed or modi-
fied and yet-to-be-proven controller. In the event that the new controller fails, the safety con-
troller is ready and able to take control before a system failure occurs.

In the context of motion control, this limits the domain of application to those in which

* The safety and performance of the system is measurable and analyzable at
runtime in a timely manner. This gives the safety controller enough time to
take over in the event of a failure.

a It is possible to design such a simple and robust safety controller.

Note that the safety controller is not strictly necessary if the system is inherently fail-safe (e.g.,

gravity may make certain systems end up in a safe state in the event of a controller failure.)

Generally, the advanced controller is expected to be able to follow a reference signal (com-
mand) faster and with a higher degree of precision (higher control performance) than the safe-
ty controller. However, the trajectories of the advanced controller must be within the

controllable states of the safety controller. In other words, the state space of the advanced
controller must be a subset of the safety controller's controllable states, although the two con-
trollers may have very different behaviors in response to a command.

In addition to analytic redundancy, the Simplex architecture makes use of Generalized Rate
Monotonic Scheduling to avoid resource utilization hazards, and separate (operating system
enforced) address spaces for all processes to avoid resource corruption hazards. Communi-
cation between processes are conducted via a message passing protocol.

The hazards and how we deal with them are shown pictorially in Figure 1.

Resource Utilization
Hazard

RT CPU Scheduling
& Static Memory Allocation
Within Protected Address Spaces

Runtime Error
Containment

Hazard of
corruption by
others

Computatio I
Hazard a /• Analytic

Redundancy

Figure 1: The Software Hazard Space

4 CMU/SEI-96-TR-006

2.2.2 Making Changes Easy

Support for online software changes is another key requirement. To this end, we need to pro-
vide application developers a software packaging construction that can be modified and re-
placed online. The basic building block of the Simplex Architecture is the replacement unit. A
replacement unit is a process with a communication template that facilitates its replacement
with another replacement unit, online. The new replacement unit might be an improved (or re-
paired) version of the old one, or have entirely different functionality. Replacement units are
designed in such a way that they can be added, deleted, merged, or split online by a set of
standardized upgrade transactions. Using the replacement unit as the basic building block al-
lows a uniform approach to support not only the evolution of the application architecture but
also that of the Simplex Architecture itself.

Replacement units are specialized into application units and supervisor units. Application units
are used to provided functionalities required by the applications. Supervisor units are used to
implement process and communication management functions that are independent of the
application semantics. In the uni-processor implementation of the Simplex Architecture, appli-
cation replacement units can be freely replaced. In multi-processor implementations it is also
possible to do online replacement of the supervisor units.

Specialized replacement units are assembled into subsystem modules. The system may be
built out of one or several subsystem modules. The uni-process Simplex Architecture modeled
in this paper consists of one subsystem module. A particular subsystem module is used to im-
plement a distinct application function such as set point control, trajectory generation, motion
coordination, and user interfaces. A typical subsystem module consists of a module manage-
ment unit (often referred to as the Upgrade Manager), one or more application units, and an
optional safety unit. The safety unit is intended to implement a safety controller and system
performance and safety monitoring functions. Device I/O can reside within the optional safety
unit or in a separate application unit. However, it cannot reside within application units whose
correctness is questionable since device I/O is always critical to the control of the system.

The upgrade manager is a replacement unit with functions that are designed to support pro-
cess management, the upgrade operation, and the handling of software faults in an application
unit. Structurally, both the safety unit and the application units may be child processes of the
management unit, with the safety unit being a trusted and privileged application unit.

Each subsystem module also acts as a software fault-containment unit and normally runs in
its own set of address spaces (typically one per replacement unit). This provides protection
against resource corruption hazards. Resource utilization hazards also need to be considered.
For example, an application unit can burn more CPU cycles than expected because of some
error condition. The protection against timing faults can be provided in one of two ways. First,
one can keep track of the CPU cycles used by the application units and compare the count

CMU/SEI-96-TR-006 5

with an expected value. This requires OS support and consumes CPU in the form of some
scheduling overhead. Secondly, one can assign to the safety units a higher priority than those
of the application units. This approach can be implemented in an OS that supports fixed prior-
ity scheduling and if the CPU cost is in the form of bounded priority inversion to all safety units.

Because the creation and destruction of processes are resource-intensive it must occur at a
lower priority than those of the units controlling the system. For this reason, when the Upgrade
Manager creates a process it assigns a low priority to it. Once the new process has gained all
necessary resources in the background, the Upgrade Manager raises its priority to the value
required to run normally. To kill a process, the Upgrade Manager first has to lower its priority.

The fundamental operation provided by the Simplex Architecture to support system evolution
is the replacement transaction, where one replacement unit is replaced by another. This typi-
cally involves moving from a running application to a new (and hopefully improved) version of
the application. During this replacement transaction, state information (e.g. those relating to
controllers or filters) may need to be transferred from the original unit to the new replacement
unit. Alternatively, the new unit may capture the dynamic state information of physical systems
through input devices. Without state information, there may be undesirable transients in the
behavior of the new replacement unit when it comes online. Hence, the replacement transac-
tion of a single replacement unit is carried out in stages:

1. The new replacement unit is created.

2. New input and any state information is provided to the new replacement unit
when it is ready. The new unit begins computations based on the data. The
output of the unit is monitored but not used.

3. The upgrade manager waits for the output of the new unit to synchronize or
converge to a stable point.

4. Finally, the output of the old unit is turned off and the new unit is turned on.
(In practice this means that the outputs from the old unit are ignored in favor
of those from the new unit.) The old unit can now be destroyed.

A two-phase protocol can be used when multiple replacement units are to be replaced simul-
taneously. The first phase is to wait for all the new replacement units to reach a steady state
(step 3 above). The second phase is a distributed action that simultaneously switches on all
the new replacement units and switches off all the old replacement units. The granularity of
"simultaneity" is subject to the accuracy of clock synchronization in a distributed system (but
we are not dealing with a distributed version). If the switching is successful, the old replace-
ment units can be destroyed. If the switching of any unit is not successful, the system can au-
tomatically switch back to the old replacement units and the replacement transaction can be
aborted.

6 CMU/SEI-96-TR-006

2.2.3 Making Development Faster

Another important requirement is speeding the development process. We achieve this require-
ment by providing several facilities detailed below.

Fault Tolerance Facility: Fault tolerance approaches have a very significant impact on the sys-

tem architecture because they dictate the protocols for interactions between members of a
fault tolerant group. The approach commonly used is replication. Unfortunately, this approach
is not compatible with requirements 1 and 2, safe and easy online evolution. Replication offers
no defense against logical errors that could be introduced in a software upgrade. Furthermore,
in a replicated system, if only a minority of a fault tolerant group is upgraded, there will be no

effect on the system behavior. This is because the majority will see that the minority does not
agree and will take corrective action. On the other hand, if one upgrades a majority of the fault
tolerant group, there is a real likelihood that the system will fail before it stabilizes. To escape
from this upgrade paradox, a new approach must be used. Analytic redundancy, already de-
scribed in Section 2.2.1, allows well formed diversity among components of a fault tolerant
group in the following sense: it permits the replacement of an existing component with a new
one that improves the performance while observing the safety constraints. Furthermore, it al-
lows this improved component to gain control; yet it is able to regain control from an active
controller who is either non-performing or violates the safety constraint. This allows develop-
ers to experiment with new controllers without fear of crashing the system.

Real Time Scheduling and Communication Facility. A real-time scheduling and communica-
tion facility is used to perform the creation, replacement, scheduling, and destruction of pro-
cesses and threads in real time. Communications between software components is indirect
through this facility, which makes online replacement possible. The communication facility is
able to meet timing and reliability requirements imposed by motion control applications.

2.2.4 Using Standardized and COTS Components

The Simplex architecture makes use of both standardized and COTS components. The Uni-
processor Simplex is built upon a standard real-time POSIX compliant operating system run-
ning on a COTS IBM-PC compatible computer. X-Windows is employed for the user interface.

2.3 A Uni-Processor Example

The uni-processor version of the Simplex architecture has six units: Physical I/0, Decision
Unit, Safety Controller, Baseline Controller, Complex Controller, and Upgrade Manager. They
can be grouped into trusted and untrusted components. Components are trusted because of
long experience using them, extensive testing, or formal proof of correctness. In the uni-pro-
cessor version of Simplex the unexpected failure of a trusted component can cause the sys-
tem to fail. Physical I/O, Upgrade Manager, Safety, and Decision are the trusted components.
Baseline and Complex are untrusted components that the application developers have pro-
duced to control the system.

CMU/SEI-96-TR-006 .7

The Physical I/0 unit has control of all input and output to the plant. It is the only component

that communicates directly to the device.

The Upgrade Manager unit handles all changes in the system configuration (i.e., creation and

destruction of units, establishing connections to new units, and disconnecting old units) and is

responsible for the replacement transaction described later.

The Decision unit is ultimately responsible for the controller (either Complex, Baseline, or

Safety) that is in control of the device. When everything is operating smoothly, the Complex

unit controls the device. If Complex fails hard (i.e., fail-stop) then the Baseline unit is given con-

trol of the device. If Complex fails in a way that is pushing the device outside the safety region
then the Safety unit is given control. Once the Safety Controller stabilizes the device, control

is given to Baseline and Complex is killed. Should Baseline cause the device to head outside

the safety region the Safety unit is given control and Baseline is killed. The Safety unit is the

last resort. It guarantees that the device will remain in a safe state, but makes no attempt to

maintain performance characteristics. Although this example only shows replacement of Com-

plex, each of these units is a replacement unitthat can potentially be replaced online. However

in practice, for the uni-processor Simplex being described, only the Baseline Controller and

the Complex Controller can actually be replaced.

Figure 2 shows graphically the relationship between these units.

Baseline Upgrade
Mgr

Pyia Complex

Safety

Figure 2: Simplex Architecture Unit Relationships

8 CMU/SEI-96-TR-006

3 System Behavior

Given the preceding informal description of the uni-processor Simplex architecture, we are
ready to attempt to formally describe it. In this chapter we will develop a CSP description of it,
while in the next we will use the Wright language to describe it.

The following diagram depicts the interactions of Simplex with its environment:

IUser Jrm Se simplex It Plant • 'n" •rmin

Figure 3: Simplex Context Diagram

In this context, the Real Worldcan be modeled as the process resulting from the user, the plant

and Simplex interacting:

REAL•WORLD = USER II SIMPLEX II PLANT

where

SIMPLEX = fromPlant?status -- toPlant!cntrlout -- SIMPLEX
[]
fromUser?cmd -4 SIMPLEX

The following sections present the assumptions and abstraction techniques, the global defini-
tions, two representations of the internal behavior of Simplex, and the properties verified along
with the results of these verifications.

3.1 Assumptions

This section presents the assumptions made while preparing these models, and the assump-
tions upon which the Simplex architecture is based.

The following are the assumptions we made to simplify the model and restrict the level of ab-
straction to the point required to represent the architecture and prove the desired properties:

* Neither Wright nor CSP provide support for modeling and analyzing timing
behaviors. To work around this problem we are assuming that the hard real-
time constraints can be abstracted and do not need to be modeled to define
the software architecture.1 See the abstraction techniques for details on how
the timing constraints were handled.

1. As we shall see later in Section 5, this assumption ultimately proves invalid.

CMU/SEI-96-TR-006 9

"* The Baseline component is always running before the user starts the
Complex component. Also, the user has to kill Complex before being able to
kill Baseline. These assumptions imply that whenever the Complex
component is running, the Baseline component is also running. In the real
prototype the user can start and kill components in any order and at any time.
The assumption simplifies the modeling of the fall-back technique and
reduces the size of the models. To represent the real situation, the model can
be expanded to include all possible configurations of the system (i.e.,
Complex and Safety running, but not Baseline). In that case, if the Complex
component fails or is killed, the control of the plant will be transferred to
Safety or Baseline depending on the state of the system. With the
assumption made, there is only one possible state of the system after
Complex disappears and control is transferred to Baseline.

" The start-up of the system is not modeled. We begin the modeling of the
system's behavior assuming that all trusted components are running.

" The underlying assumptions that support the Simplex architecture are

- Every component in the system is assigned a priority. The Physical I/O
and Decision components hold the highest priorities. Safety, Baseline,
and Complex follow in that order. The lowest priority corresponds to the
Upgrade Manager unit.

- The underlying operating system assures that there is no priority
inversion.

- Resource utilization hazards are avoided by using Generalized Rate
Monotonic scheduling and locking all real-time tasks in main memory.
Resource corruption hazards are avoided by the underlying operating
system and hardware support.

The first two are very important assumptions since they resolve a divergence presented later
in this paper.

10 CMU/SEI-96-TR-006

3.2 Abstraction Techniques

The abstraction techniques used in the models are summarized below to facilitate understand-
ing.

Dynamic creation and destruction of processes: The first state of all processes is "inexistent."
Once they are created by the Upgrade Manager it takes them a finite time to acquire all re-
quired resources and be ready to become operational. Thus, other two states can be identi-
fied: "initializing" and "ready to run." These states and the associated transitions are modeled
as follows:

Inexistent: process ready to engage in the start event.

Initializing: process has engaged in the start event and is ready to send an
initDone event to the Upgrade Manager.

Ready to run: process has sent the initDone event to the Upgrade Manager.

The Upgrade Manager can kill a process after a user request or a Decision request to do so.
For a process being killed, it takes a finite time to return all allocated resources to the operating
system. Two states can be identified: "being killed," once the kill command is received from
the Upgrade Manager; and "dead," when all system resources have been returned. Then the
process returns to the "inexistent" state. These states and transitions are modeled as follows:

Being killed: a process engages in a kill event received from the Upgrade Man-
ager.

Dead: a process that engaged in a kill event has sent a dead event to the
Upgrade Manager.

Another situation occurs when an untrusted component fail-stops. In the first model presented,
this case is abstracted by having the process generate a fail-stop event and return to the
"inexistent" state. In the second model, the case is detected by Decision as a responseTimeout

from the controller.

Replacement transaction completeness criteria: The replacement transaction is completed
once the new unit reaches convergence. The convergence criterion is embedded in the Up-
grade Manager which is responsible for verifying it. However, a new unit may be defective and
never reach convergence. For that reason, new units are given a time for reaching conver-
gence, after which they are killed if they do not succeed. This is modeled by having the new
units generate undeterministically a convergenceDetected event, or a convergenceTimeout

event.

CMU/SEI-96-TR-006 11

Untrusted components' normal behavior and failure: Controller components have a deadline

for submitting a control value to the Decision unit. If the component in control of the device
misses its deadline, it is killed. Also, a timely response can be erroneous (i.e., out of range,
push the device outside the safety region) or correct. We do not model actual values. The
types of responses are modeled as:

la: If the value provided is out of range or pushes the device outside the

safety region the component sends an illegalout event to Deci-
sion.

Time-out: If the component missed its deadline for providing a control value to
Decision it generates a responseTimeout event.

Normal: The component issues a valid control value to Decision by sending
the event cntrlout.

Plant condition: The device can be operating within the safety region or outside it. Feedback
on the status of the plant is received periodically through the Physical I/O component. This
feedback is modeled by having the plant generate undeterministically a safe or unsafe event
to the system.

Priority management One of the underlying assumptions of the Simplex architecture is that
processes run with different priorities. We did not model the actual value being assigned to
process. However, we modeled the modifications on a component's priority by the Upgrade
Manager:

Raise: The Upgrade Manager raises a component's priority by sending a
raise<Component>Prio message to it.

Lower: The Upgrade Manager lowers a component's priority by sending a
lower<Component>Prio message to it.

12 CMU/SEI-96-TR-006

3.3 FDR Model Checking Guidelines

Let M be a CSP model of a software system S, and let p be a desired property for the system
S. In order to check with FDR that p is satisfied by M (that is, M • p) we have to do the
following:

* Express the property p as a "trivial" CSP process P that describes the
sequence of relevant events that characterizes it. P can be seen as the
simplest process that satisfies the property p.

* Find a modified version of M, named Mp, such that aMp = aP (e.g., using the
renaming and hiding operators of CSP).

* Verify P for Mp as follows:

If P is a safety property, then check:

P F-"- T MP

(in FDR syntax: CheckTrace 'P" "Mp")

else if P is a liveness property, then check:

P F--FD Mp

(in FDR syntax: Check1 'P' "Mp")

3.4 Definitions

This section provides the definitions for the system events, channel alphabets and channels
used in the models presented. The table below presents the definitions of all the event names
used in the model.

Table 1: Simplex Events

Event Description
baselineRunning The upgrade manager informs Decision that a new baseline

controller is running and ready to send output.
cntrlout One of the controllers (complex, baseline, or safety) generates

a valid control output to be sent to the plant.
complexRunning The upgrade manager informs Decision that a new complex

controller is running and ready to send output.
convergenceDetected The upgrade manager detects that the replacement unit for one

of the untrusted components (baseline or complex) has
reached convergence (after it was started, as part of a replace-
ment transaction).

convergenceTimeout The upgrade manager detects that the replacement unit for one
of the untrusted components (baseline or complex) has failed to
reach convergence within the stipulated time frame.

dead One of the untrusted controllers (complex or baseline) acknowl-
edges a kill request received from the upgrade manager.

CMU/SEI-96-TR-006 13

Table 1: Simplex Events

enableOutput The upgrade manager enables the outputs of one of the un-
trusted controllers (complex or baseline)

illegalout One of the untrusted controllers (complex or baseline) gener-
ates an illegal control output.

initDone One of the untrusted controllers (complex or baseline) tells the
upgrade manager that it has completed its initialization pro-
cess.

kill The upgrade manager asks one of the untrusted controllers
(complex or baseline) to die.

KillBaseline The upgrade manager receives a request to kill the baseline
controller.

KillComplex The upgrade manager receives a request to kill the complex
controller.

lowerBaselinePrio The upgrade manager lowers the priority of the baseline con-
troller.

lowerComplexPrio The upgrade manager lowers the priority of the complex con-
troller.

raiseBaselinePrio The upgrade manager raises the priority of the baseline control-
ler.

raiseComplexPrio The upgrade manager raises the priority of the complex control-
ler.

responseTimeout One of the untrusted controllers (complex or baseline) does not
generate a control output on time. It misses its deadline or falls
into an infinite loop.

safe The Simplex software detects that the plant is operating inside
the safety region (operational states [Sha 95])

start One of the untrusted controllers (complex or baseline) is started
by the upgrade manager.

startBaseline The user requests to start the baseline controller.
startComplex The user requests to start a new complex controller.
unsafe The Simplex software detects that the plant is operating outside

the safety region (hazard states [Sha 95])
userKillBaseline The upgrade manager notifies to decision that the user has re-

quested to kill the baseline controller.
userKillComplex The upgrade manager notifies to decision that the user has re-

quested to kill the complex controller.

14 CMU/SEI-96-TR-006

The table below presents the definition of the channel alphabets used in the model.

Table 2: Channel Alphabet

Alphabet Description
FROMPLANT = {safe, unsafe) Events received from the controlled plant.
TOPLANT = {cntrlout} Events sent to the controlled plant.
CNTRLEVT = {cntrlout, illegalout, Events generated by the controllers.
responseTimeout}
UMtoCTRL = {start, enableOutput, kill} Events sent from the Upgrade Manager to

the controllers.
CTRLtoUM = {initDone, dead} Events sent from the controllers to the Up-

grade Manager.
DtoUM = {killBaseline, killComplex} Events sent from Decision to the Upgrade

Manager.
UMtoD = (baselineRunning, complexRun- Events sent from the Upgrade Manager to
ning, userKillBaseline, userKillComplex} Decision.

FROMUSER = {startBaseline, startCom- Events received from the user.
plex, killBaseline, killComplex}

The following are the declarations of the channels used in the model:

pragma channel fromPlant, fromIO: FROMPLANT
pragma channel toPlant, tolO: TOPLANT
pragma channel fromComplex, fromBaseline, fromSafety:
CNTRLEVT
pragma channel UMtoComplex, UMtoBaseline: UMtoCTRL
pragma channel ComplexToUM, BaselineToUM: CTRLtoUM
pragma channel DecisionToUM: DtoUM
pragma channel UMtoDecision: UMtoD
pragma channel fromUser: FROMUSER

The independent events observed/produced by the Upgrade Manager are

pragma channel convergenceDetected
pragma channel convergenceTimeout
pragma channel raiseBaselinePrio
pragma channel raiseComplexPrio
pragma channel lowerBaselinePrio
pragma channel lowerComplexPrio

3.5 Preliminary Model

The CSP model presented next describes the overall dynamic behavior for the uni-processor
Simplex architecture. It presents the fall-back mechanism starting from a state in which all
components (trusted and untrusted) are already running. This model does not include the Up-
grade Manager unit that will be introduced in Section 3.6.

CMU/SEI-96-TR-006 15

The model is presented in FDR syntax [FDR 92], since the FDR model checker was used to
verify the desired properties for it. The following diagram illustrates the CSP processes and
channels used in the model:

SIMPLEX

* Decsioncomponen

froIO~nsae-fromCaeyct~u ~tI~nrot-

to~ompl Compll-Tex PAETL

fromlB ae-(rmope~nrot- toOctolant

fromBope~ 1/t0mpe~il ~BSLIEAE

ffroplmfiltpS~ESLIEAE

Sfroety ln~altp- ro~ft~nrot-

DECIIOcNtlu =* SAFETYLOOP
BASELIEXLOOP =

fromlO unsafe ---froinSafety. cntrlout -4tolO! cntrlout -*

to~oapexlekill -4 TMSAFETYLOOP

f romlo. oaf e --- BASEmomLIESAFE iot- ol!ctrot-
TENPSAETYLOOP=

16 cu/s~-96-R-03

(H x:(illealout res_______Iut

f romIO. saf e --) BASELINESAFE

fromlo. unsafe -* fromSaf sty. entriout -*toIO! cntrlout --
TEMPSAFETYLOOP

SAFETYLOOP = fromlO?x --4 fromSafety.cntrlout ---

toIO!cntrlout -ý SAFETYLOOP

*Physical 1/0 Component
PHYSICALIO = INPUT IIOUTPUT

-- Take input from Plant:

INPUT = fromPlant?status --- fromlO!status -4 INPUT

--Send output to Plant:

OUTPUT = toIO?cominand --- toPlant! command -4 OUTPUT

* Complex Component
COMPLEX =

((F1 x: {cntrlout, illegalout, responseTimeout)
fromComplex!x -4 COMPLEX)

[3
F1toComplex.kill --- SKIP)

(fromComplex!failstop -ý SKIP

toComplex.kill -4 SKIP)

* Baseline Component
BASELINE =

(frontBaseline!cntrlout -ý BASELINE
[J
toBaseline.kill --4 SKIP)

(fromBaseline!failstop -* SKIP

toBaseline.kill -* SKIP)

s Safety Component
SAFETY =fromSafety!cntrlout --- SAFETY

CMU/SEI-96-TR-006 17

3.6 Final Model

This model is based on the one presented before but it includes the Upgrade Manager unit.
The system is modeled starting at a state in which all trusted components are running and new
untrusted units (Baseline or Complex) are started, controlled, and killed through the Upgrade
Manager. We are primarily modeling the Simplex Architecture and demonstrating its correct-
ness independent of the actual application.

SIMPLEX

tolO
Decision -

frm erfromC

C o p e t c P la n t

r 5: fromlO Physical PLANT

Baseline a n rhe froDisPlant

fromnS
Safety

S<CtoUM*[UMtoC

SUpgrade Manager 1 fromnUser USER

Figure 5: Final Model

To increase readability, not all the channels are shown in the diagram. Decision has also an

incoming channel from the Upgrade Manager. Baseline and Physical I/O have incoming
and outgoing channels with the Upgrade Manager. Since Safety is actually embedded in De-

cision, it does not have explicit connections with the Upgrade Manager.

3.6.1 Process Definitions

This section presents the process definitions for the final model of the system's behavior.

* Top-level Process

SIMPLEX =
UPGRADEMGR
1(UMtoComplex, ComplexToUM, UMtoBaseline,

BaselineToUM, DecisionToUM, UMtoDecision }I
((DECISION

18 CMU/SEI-96-TR-006

I(fromComplex, fromBaseline, fromSafety)I
(COMPLEX III BASELINE III SAFETY))

I(fromIO, toIO)I
PHYSICALIO)

NOTE: It is important to notice that the synchronization on channel fromlO for processes Com-
plex, Baseline, and Safety has been omitted since it is not relevant to the purpose of the mod-
el.

Uprade Manager

UPGRADEMGR = WILLINGTOSTARTBASELINE
WILLINGTOSTARTEASELINE =

fromUser.startBaseline -~UMtoBaseline! start -

Basel ineToUM. ini tDone -~raiseBaselinePrio ---

(convergenceDetected -~UMtoBaseline enableOutput -

UMtoDecision! baselineRunning -> WILLINGTOSTARTCOMPLEX
F1
convergenceTimeout -*KILLBASELINE)

WILLINGTOSTARTCOMPLEX-
fromUser. startComplex --> STARTCOMPLEX
[]
DecisionToUM.killBaseline ->' KILLBASELINE
[3
frornUser .killBaseline->UMtoDecision userKillBaseline
-4 KILLBASELINE

KILLBASELINE =
lowerBaselinePrio -'UMtoBaseline! kill -->
Basel ineToUM. dead -*WILLINGTOSTARTBASELINE

STARTCOMPLEX =
UMtoCornplex! start -ý ComplexToUTM.initDone ->

raiseComplexPrio -4 (convergenceTimeout -4
KILLCOMPLEX

F1
convergenceDetected -4 UMtoCornplex!enableOutput --
UMtoDecision! complexRunning -4
(fromUser.killCornplex --i>
UMtoDec is ion! userKillCoinplex -4 KILLCOMPLEX
[3
DecisionToUM.killComplex -> KILLCOMPLEX))

KILLCOMPLEX =
lowerComplexPrio -*UMtoComplex! kill ->

ComplexToUM. dead -~WILL INGTOSTARTCOMPLEX

*Decision Component
DECISION = SAFETYLOOP
SAFETYLOOP =

fromIO .unsafe -*froinSafety. cntrlout -+toIO! cntrlout ->
SAFETYLOOP

[3
fromlO.safe -4 (UMtoDecision.baselineRunning ->

BASELINESAFE

CMU/SEI-96-TR-006 19

fromSafety.cntrlout -- toIO!cntrlout -ý SAFETYLOOP)

EASELINELOOP =

fromlo unsafe -4fromSafety. cntrlout -*toTO! cntrlout ->
DecisionToUM!killBaseline -4 SAFETYLOOP

[J
fromTO.safe --> (UMtoDecision.complexRunning -4

COMPLEXSAFE

BASELINE SAFE)

UMtoDecision.userKillBaseline -4 SAFETYLOOP
BASELINESAFE =

f roruBaseline. cntrlout --* toIO! cntrlout -4 BASELINELOOP

[3
C]x: {illegalout, responseTimeout)
fromBaseline.x -4 DecisionToUM!killBaseline -4

fromSafety.cntrlout -*)toIO!cntrlout -* SAFETYLOOP)
COMPLEXLOOP =

fromlO unsafe -* fromSafety. cntrlout -4 tolO!cntrlout -4
DecisionTotjM! kiliComplex -4 TEMPSAFETYLOOP

[]
fromlO.safe --> CONPLEXSAFE

UMtoDecision.userKillCornplex -4 BASELINELOOP
COMPLEXSAFE =

fromComplex.cntrlout --> toIO!cntrlout -4 COMPLEXLOOP

C]x: {illegalout, responseTixneout)
froinCoinplex.x -4 DecisionToUM!killCornplex -4

EASEL INESAFE)

TENPSAFETYLOOP =

fromIO.safe --- BASELINESAFE

1]
fromIO .unsafe -- fromSafety. cntrlout -*toIO! ontriout -*

TEMPSAFETYLOOP

"* Safety Controller
SAFETY = fromSafety!cntrlout --4 SAFETY

"* Baseline Controller
BASELINE-

tjMtoBaseline. start -4 Basel ineToUM! ini tDone --*

(UMtoBaseline. enableOutput -> BASELINERUNNING
[]
tMtoBaseline. kill -> Basel ineToUM! dead -> BASELINE)

BASELINERUNNING=

(lx: {entriout, iliegalout, responseTilneout)
fromBaseline!x -> BASEL INERUNNING)

UMtoBaseline. kill -4 BaselineToUN! dead -> BASELINE

20 CMU/SEI-96-TR-006

"* Complex Controller
COMPLEX =

UMtoComplex.start -* ComplexToUM!initDone -*

(UMtoComplex. enableOutput -4 COMPLEXRUNNING

[]
UMtoComplex.kill -4 ComplexToUM!dead -4 COMPLEX)

COMPLEXRUNNING =
(F] x: {cntrlout, illegalout, responseTimeout)

fromComplex!x -- COMPLEXRUNNING)

[]
UMtoComplex.kill -4 ComplexToUM!dead --- COMPLEX

"* Physical I/0 component
PHYSICALIO = INPUT III OUTPUT

-- Take input from the Plant:

INPUT = fromPlant?status -4 fromIO!status -- INPUT

-- Send output to the Plant:

OUTPUT = toIO?command -) toPlant!command -• OUTPUT

3.6.2 Properties Verified

This section presents some behavioral properties about the Simplex system that were verified
using FDR. The properties are presented along with a simple process that satisfies them. If no
comments are appended, the refinement was satisfied and the property holds for the final
model.

* Auxiliary definitions

SIGMA = {I fromUser, fromPlant, toPlant, fromIO, tolO,
fromComplex, fromBaseline, fromSafety,
UftoComplex, UMtoBaseline, ComplexToUM,
BaselineToUM, DecisionToUM, UMtoDecision,
convergenceDetected,
convergenceTimeout,
raiseBaselinePrio,
raiseComplexPrio,
lowerBaselinePrio,
lowerComplexPrio j)

pragma channel e

o Property 1: Deadlock-free.

I P1 is failure-divergence-refined by PISIMPLEX

where:

P1 = e -4 P1

CMU/SEI-96-TR-006 21

PISIMPLEX = identify (SIGMA, e, SIMPLEX)

Property 2 Control commands are sent to the plant infinitely often. That is, it is never the

case that from a given instant commands are not sent to the plant anymore.

F P2 is failure-divergence-refined by P2SIMPLEX

where:

P2 = [1 x: TOPLANT - toIO!x -- P2
P2SIMPLEX = SIMPLEX \ diff (SIGMA, {j tolO 1})

* Property 3: It is never the case that there are two consecutive readings from the plant with-

out an output command between them. In other words, after reading the status of the plant,
and before performing the next reading, a command has to be sent to the plant. (This could
be a way of detecting that a deadline was missed.)

- P3 is trace-refined by P3SIMPLEX

where:

P3 = fromIO?x -- toIO!cntrlout -4 P3
P3SIMPLEX = SIMPLEX \ diff (SIGMA, {I fromIO, tolO I)

* Property 4: After unsafe condition the plant is immediately controlled by safety, and as long
as it is unsafe it remains in control by safety.

1- P4 is trace-refined by P4SIMPLEX

where:

P4 = fromIO.unsafe-9fromSafety.cntrlout -*toIO.cntrlout
-> P4

[1
fromIo.safe -ý (F1 c: { fromComplex, fromBaseline,

fromSafety) *
c.cntrlout -- toIO.cntrlout -- P4)

P4SIMPLEX = SIMPLEX \ diff (SIGMA, {I fromlO, tolO,
fromSafety. cntrlout, fromComplex. cntrlout,
fromBaseline.cntrlout IM)

* Property 5: Whenever the plant is in safe state and is being controlled by the complex con-
troller, if the complex controller does not produce an output on time (i.e. it misses its deadline
or falls into an infinite loop) or if the output is illegal, the control of the device is passed to the
baseline controller (or to the safety controller, in case the baseline controller fails).

I-P5 is trace-refined by P5SIMPLEX

where:

P5 = fromIO.safe -4
((F] x: {illegalout, responseTimeout)

22 CMU/SEI-96-TR-006

fromComplex.x -- ([] c: {fromBaseline, fromSafety} *
c.cntrlout -4 P5))F1
([1 c: {fromComplex, fromBaseline, fromSafety}

c.cntrlout -* P5))
Fl
fromIO.unsafe -* fromSafety.cntrlout -* P5

P5SIMPLEX = SIMPLEX \ diff (SIGMA, { I fromIO, fromComplex,
fromBaseline. cntrlout,
fromSafety.cntrlout I))

Property 6: Whenever Complex is started, Baseline has to be running, and it never happens
that there is more than one Baseline or more than one Complex running.

I P6 is trace-refined by P6SIMPLEX

where:

P6 = UMtoBaseline.start -> P6AUX
P6AUX UMtoComplex.start -> UMtoComplex.kill -> P6AUX

r1
UMtoBaseline.kill -- P6

P6SIMPLEX = SIMPLEX \ diff (SIGMA, { UMtoBaseline.start,
UMtoBaseline.kill, UMtoComplex. start,
UMtoComplex.kill })

3.6.3 FDR Verification Results
The model presented above has a problem: while properties 3 through 6 are satisfied,
properties 1 and 2 are not because ofspecial cases in starting Complex or killing Baseli-
ne/Complex that were not considered. When FDR is told to check failure-divergence
refinement for property 1, it finds the following failure as a counterexample:

After
<fromPlant. safe, fromlO. safe, fromPlant .unsafe, fromUser. startBaseli
ne,UMtoBaseline. start, BaselineToUM. initDone, raiseBaselinePrio, tau
convergenceDetected,tUMtoBaseline.enableOutput,tUmtoDecision.basel

ineRunning, fromUser.killBaseline, tau, fromBaseline. illegalout, tau>
refuses

(I { j fromPlant, fromlO, toPlant, tolO, fromComplex, fromBaseline, fromSa
ety, UMtoComplex, UMtoBaseline, ComplexToUM, BaselineToUM, DecisionTo

,tUMtoDecision, fromUser, convergenceDetected, convergenceTimeout, r
iseBaselinePrio, raiseComplexPrio, lowerBaselinePrio, lowerComplexP
3io,tickl})

Our interpretation of this result from FDR is that at just about the same instant, both the user
and Decision could want to kill Baseline. This is the case when the user asks the Upgrade
Manager to kill Baseline, and just about at the same time Baseline fails, causing Decision to
also ask the Upgrade Manager to kill Baseline. This situation is revealed by FDR as a CSP
deadlock in which the Upgrade Manager only wants to engage in the event UMtoDecision.
userKillBaseline but Decision only wants to engage in the event Decision ToUM.killBaseline.

CMU/SEI-96-TR-006 23

While we were fixing this problem, FDR showed some other failures that revealed other spe-
cial cases we did not consider. Finally, we modified the model as presented in the next section.

3.6.4 Corrections to the Model

In order for the model to satisfy property 1 we had to modify the specification of the Upgrade
Manager unit as shown below. This solution suggests that, at the implementation level, when
the Upgrade Manager sends the message userkil/Baseline to Decision, it should wait for an
acknowledge for that message or the message kifiBaseline back from Decision.

UPGRADEMGR = WILLINGTOSTARTBASELINIE

WILLINGTOSTARTEASELINE =
fromUser.startBaseline -4 UMtoBaseline! start -4

Basel ineToUM. ini tDone -4 raiseBaselinePria ---

(convergenceDetected -> UMtoBaseline!enableOutput -

UMtoDec is ion! baselineRunning --> WILLINGTOSTARTCOMPLEX
n1
convergenceTimeout -4KILLBASELINE)

WILLINGTOSTARTCOZ4PLEX=

fromUser. startComplex -> STARTCOMPLEX
13
DecisionToUM.killBaseline -4 KILLBASELINE
1]
f roxuUser. ki lBaseline--XU~toDecis ion! userKil lBasel ine
-4KILLBASELINE

H]
DecisionToUM.killBaseline -4 KILLBASELINE)

KILLBASELINE =

lowerBaselinePria - UMtoBaseline! kill -

BaselineToUM. dead -4WILLINGTOSTARTBASELINE

STARTCOMPLEX =
UMtoCornplex!start ->ComplexTotJM.initDone -

raiseCoxuplexPrio -4-

FTconvergenceTimeout -4 KILLCOMPLEX

convergenceDetected -4 UMtoComplex! enableOutput -

(U~toDecision! coinplexRunning -

(fromUser.killComplex -

(UMtoDecision!userKillComplex -> KTLLCOMPLEX

C]
DecisionToUM.killCornplex --- KILLCOMPLEX)
1]
DecisionToUM. kiliComplex -4 KILLCOMPLEX)

DecisionToUM.killBaseline -4 lowerComplexPria -

UMtoComplex! kill --- ComplexToUM. dead -4

KILLBASELINE))
KILLCONPLEX =

lowerCornplexPrio -4 UMtoComplex!kill -

ComplexToUM. dead -

WILLINGTOSTARTCOMPLEX

24 CMU/SEI-96-TR-006

However, the new model including this modification does not satisfy property 2. The reason is

a divergence caused by lack of fairness in FDR. When trying to check failure-divergence re-

finement, FDR finds the following divergence as a counterexample:rfter <> diverges:
<fromUser.startBaseline,UMtoBaseline.start,BaselineToUM.initDone,
raiseBaselinePrio, tau, convergenceTimeout, lowerBaselinePrio, UMtoBa
seiine. ki11, BaseineToUM. dead>

This divergence presents the case in which the user requests the Upgrade Manager to start a

Baseline component that, once started, never reaches convergence. The Upgrade Manager

kills the Baseline component but then the user requests a new start-up.

In the actual environment this divergence does not affect the system's ability to send a com-

mand to the plant infinitely often. The operating system grants fairness among concurrent pro-

cesses (see assumptions in Section 3.1). Therefore, Decision and Physical I/O, the two

processes with the highest priorities, always have a chance to meet their deadlines.

One of the tasks in requirements engineering is to analyze the current environment and pos-
sible future environments to detect extensibility constraints. In this case, the process for start-
ing the Baseline component is initiated by a human being. However, a possible extension to
the system is to have a process automatically bring up all the Simplex components. If the user
provides a defective Baseline that will never reach convergence, the automatic process will try
to start it forever. The divergence has to be solved by adding a maximum number of retries.

Also, in the current environment the Simplex architecture presents only six components. How-
ever, in the future users may want to add more intermediate levels of fall-back. At one point,

the number of processes running might preclude Decision and Physical I/O from meeting their
deadlines. There will be a need for schedulability analysis.

CMU/SEI-96-TR-006 25

26 CMU/SEi-96-TR-006

4 Software Architecture

This section presents the Simplex software architecture derived from the models of the behav-
ior of the system.

4.1 Graphical Representation

The following two figures illustrate the overall structure of the Simplex architecture. The first
presents the components and connectors excluding the Upgrade Manager. This part of the ar-
chitecture implements the fall-back mechanism:

Decision P ta

Safety dta P F Compex S d ta Physical I/O

Baseline -.

Distribution tag connector with
Subscriber and Publisher plugs Component Procedure call

Figure 6: Software Architecture Excluding Connections to the Upgrade Manager

CMU/SEI-96-TR-006 27

The next view presents all Simplex components and all connectors from/to the Upgrade Man-
ager.

S Decision P

Fdtag dtag S. Fs complex Physical VO

s Baseline Pdtag_

-tg Upgrade Manager -

Figure 7: Software Architecture Showing Connections to the Upgrade Manager

These connectors are used to implement the control of processes (i.e., creation, destruction,
replacement, priority change). This view of the architecture adds the component and connec-
tors necessary to implement the final model presented. Note that the CSP model used makes
it appear that all processes exist a priori, and are sent stop and start messages. This is for
modeling purposes only. The actual implementation does not behave this way.

Both views are part of the Simplex software architecture. They were presented separately to
avoid the cluttering of the drawing. The formalization of this architecture is presented in the
following sections.

4.2 Wright Specification

A formal specification of the Uni-processor Simplex architecture was developed to describe
precisely the interaction between the architectural components as well as the required archi-
tectural connectors. The Wright notation [FDR 92] was used because it allowed us to structure

an architectural description in terms of connectors, components and the behavioral relations
among them. The specification was derived from the latest version of the CSP model present-
ed in the previous sections.

The following is the Wright skeleton that describes the overall structure of the Simplex archi-
tecture:

System SIMPLEX

28 CMU/SEI-96-TR-006

Connector DISTRIBUTION TAG (numPublishers: 1..;
numSubscribers: 1..)

Role Publisher1 .numPublishers
Role Subscriber1 l. numSubscribers

Glue
Connector ProcedureCall

Role Caller
Role Declarer
Glue

Component UpgradeManager
Port To Rep 1 a c eme ntUnit tIDecision, Baseline, Complex, PhysicallO)
Port FromReplacementUnits
Computation

Component Decision
Port ToUpgradeManager
Port FromUpgradeManager
Port ToPhysicallO
Port FromPhysicallO
Port FromUntrustedControllers
Port CallSafety
Computation

Component SafetyController
Port DeclareSafety
Computation

Component UntrustedController (id: (Baseline, Complex))
Port ToUpgradexanager
Port FromUpgradeManager
Port ToDecision
Port FromPhysicallO
Computation

Component PhysicallO
Port ToUpgradeManager
Port FromUpgradeManager
Port FromDecision
Port ToPhysicallnputSubscribers
Computation

Instances
-- Connectors:

upgrade~anagerlnTag: DistributionTag (4, 1)- data f low to
UpgradeManager

upgrade~anagerOutTagl.4: DistributionTag (1, 1)-- data flow from
UpgradeManager

decisionlnTag : DistributionTag (2, 1)-- data flow to Decision
physicalIOInTag : DistributionTag (1, 1) -- data f low to PhysicalIO
physicalIO~utTag: DistributionTag (1, 3)-- data flow from

Physicallo
safetyCall : ProcedureCall
-- Components:
upgradeManager: UpgradeManager
decision: Decision
safety: SafetyController
baseline: UntrustedController (Baseline)
complex: UntrustedController (Complex)
physicallO: Physicallo

CMU/SEI-96-TR-006 29

Attachments
-- Connections for upgradeManager:
upgradeManager .ToReplacementUnitDecisjon as

upgradeManagerOutTagl. Pubis iher
upgradeManager . ToRepi acementUni t Baseline as

upgradeManagerOutTag2 .Pubis iher
upgradeManage r. ToRepl acementUni tcomplex as

upgradeManagerOutTag3 .Pubis iher
upgradeManager. ToRepiacementUnitPhysicallo as

upgradeManagerOutTag4 .Pubis iher
upgradeManager. FromReplacementUnits as

upgradeManagerlnTag. Subscriber
-- Connections for decision:
decision.ToUpgradeManager as upgradeManagerlnTag. Pubiisher,
decision. FromUpgradeManager as upgradeManage rOut Tag,. Subscriber
decision.ToPhysicallo as physicallOlnTag.Publisher
decision.FromPhysicail0 as physicailOOutTag.Subscriber,
decision. FromUntrustedControllers as decisionlnTag. Subscriber
decision.CaiiSafety as safetyCall.Cailer
- - Connections for safety:
safety.DeclareSafety as safetyCaill.Declarer
-- Connections for baseline:
baseline. ToUpgradeManager as upgradeManagerlnTag. Publisher2
baseline. FromUpgradeManager as upgradeManagerOutTag2. Subscriber
baseline.ToDecision as decisionlnTag.Publisher,
baseline. FromPhysicallo as physicallOOutTag. Subscriber2
-- Connections for complex:
complex. ToUpgradeManager as upgradeManagerlnTag. Publisher3
complex. FromUpgradeManager as upgradeManagerOutTag3. Subscriber
complex.ToDecision as decisionlnTag.Publisher,
complex.FromPhysicallO as physicallOOutTag.Subscriber3

-- Connections for physicallo:

physicallO. FromUpgradexanager as
upgradexanagerOutTag4 - Subscriber

physicalIO.FromDecision as physicallOlnTag.Subscriber
physicallO .ToPhysicallnputSubscribers as

physicallOOutTag. Publisher
end SIMPLEX

The WRIGHT specifications for connectors and components are presented next.

4.2.1 Process Types

The process types used in the connector and port specifications are defined below:

Process PublisherLifeCycle=
getSendAccess -* JIX. (s-end.m~sg -4 X

F1
releaseSendAcceiss-*4 (PublisherLifeCycle [1 s)

Process SubscriberLifeCycle=
subsc-ri-be- --- JLX. (r~eceive --* return?msg --> X

30 CMU/SEI-96-TR-006

receiveWithTimeout --- (return?msg -- X
[1

timeout -> X)

Fl
unsubscribe-* (SubscriberLifeCycle F] s))

4.2.2 DistributionTag Connector

The DistributionTag connector is a multi-cast message passing mechanism that allows a
group of components (publishers) to advertise messages and allows other group of compo-
nents (subscribers) to receive the published messages [Rajkumar 95]. There can be one or

more publishers and one or more subscribers. The publishers do not need to know the identity
of the subscribers and vice versa. When a publisher sends a message, the message is broad-
casted to all the registered subscribers. For a given distributionTag connector, their publishers
and subscribers have to register with it before they can start to publish/receive messages. The
number of registered publishers and subscribers can change dynamically. At any time new
publishers or subscribers can register, or registered publishers or subscribers can cancel their
registration.

An internal priority queue of messages is kept for each subscriber, where published messages
are enqueued according to the execution priority of the corresponding publisher. (Queueing
has to be according to publisher's priority in order to avoid priority inversion problems for the
publishers). It is up to each subscriber to decide when to read messages from its queue. How-
ever, if a subscriber tries to read when the queue is empty, it will block unless it specifies a
timeout value. Mutual exclusion is required to control concurrent access to the queues in order
to guarantee atomicity for queue operations.

In the specification of the distributionTag connector presented below, the numbers used to dis-
tinguish between several publishers also represent the execution priorities of them, with num-
ber 1 being the highest priority. Although not shown in the specification, the connector has to
serve requests from publishers and subscribers in order of arrival (FIFO order), to ensure that
no starvation occurs for publishers or subscribers. Also, in order to avoid priority inversion
problems when a high-priority publisher/subscriber is waiting for its request to be served, the
connector has to use some sort of priority inheritance mechanism. (Typically, this is solved by
the underlying operating system.)

Connector DistributionTag (numPublishers: 1..;
numSubscribers: I..)

Role Publisherl..nu,,mPblishers = PublisherLifeCycle
Role Subscriber,..numSubscnbes = SubscriberLifeCycle
Glue =

(ServePublishers { } (numPublishers)III
ServeSubscribers{} (numSubscribers))

II (enqueue, dequeue, timeout)
MsgQueues (numPublishers, numSubscribers)

where

CMU/SEI-96-TR-006 31

Serve Publ1i shers Pbishers~et (numPublishers)=
(IV p: (1..numPublishers) - PublishersSet

Publisherp.getSendAccess --4
ServePublisherspublishersSet,,{pI (numPublishers))

1]
(V p: PublishersSet U]____ __

Publisherp.send?msg --> einq-ueue-!-m-sg -4

Serve Pub1is hers PublishersSet (numPublishers))

[3
(V p: PublishersSet 1]

Publisherp. releaseSendAccess a
ServePublishersPublishersset - (P) (numPublishers))

Serve Subs criber SSubscribersset (numSubscribers) =
('V s: (1. .numSubscribers) - SubscribersSet U

Subscribers, subscribe -4

S erve Subs cribers Subscribersset U (s) (numSubscribers))

(V s: SubscribersSet H]
Subscribers. receive --- dequeuem-sg --4

Subscriber, return Imsg -4

ServeSubs cribers Subs cribersSet(numSubscribers))
3]
(V s: SubscribersSet [1

Subs cri bers. rec eiveWi tiT imeout -

(dequeues7-msg -a Subscribers.retur-nl.m-sg -
ServeSubscriberssubscriberset (numSubscribers))
U]________________
timeouts -4 Subs criber5'.T-IM-eo0Ut- -4
Serve Subs cri berSSubscibers~et (numSubscribers))

1]
(V s: SubscribersSet 1]

Subscriber.. unsubscribe -
ServeSubscriberssubscriberset..fs} (numSubscribers))

MsgQueues (numPublishers, numSubscribers)=
(V s: (1. .numSubscribers) I 1{enqueue)

Queues, <> (numPublishers))

-- NOTE: When a message is published, the connector has to
-- ensure that the message is
-- stored in the queues of all the subscribers, before
-- doing anything else. This is
-- represented above by the syncrhonization on {enqueue}.

Queuesubscrber, buffer (numPubl ishe rs) =
(V p: (l..numPublishers) 13

enqzueue,?msg -4'

Queuesubscriber, prioritylnsert (buffer, pmsg) (numPubl ishe rs))
13
((dequeuesubscriber!* (head buf fer) -4 Queuesubscribertail buffer

(numPublishers))
if buffer # <> else
(t-i-meo5utsubscriber ->Queuesubsmrber, buffer (numPubl ishers)
F1

32 CMU/SEi-96-TR-006

Queuesubscnber, buffer (numPublishers)))

The prioritylnsert function can be defined in Z [Potter 91] as:

PRIO == N
[MSG]
PRIOQUEUE == seq (PRIO x MSG)

prioritylnsert: PRIOQUEUE x PRIO x MSG -- PRIOQUEUE

V queue: PRIOQUEUE; prio: PRIO; msg: MSG *
priorityInsert (queue, prio, msg) =

if queue = <> then
<prio, msg>

else
if prio < first (head queue) then
<prio, msg> r queue
else

<head queue> r) priorityInsert (tail queue, prio, msg)

4.2.3 Procedure Call Connector

This connector represents the normal procedure call and return sequence to communicate
two components, with one exporting a procedure and the other calling that procedure.

Connector ProcedureCall
Role Caller = Invokelix -ý return?y -ý (Caller F1 s)
Role Declarer = invoke?x -ý returnly -> Declarer
Glue = Caller.invoke?x -* Declarer.invokee!x -4

Declarer.return?y -- Caller.return!y -4 Glue

4.2.4 Upgrade Manager Component

The Upgrade Manager component provides the online upgrade services. In the context of the
Uni-processor Simplex architecture, it allows the user to start and terminate the untrusted con-
trollers (Baseline and Complex) without requiring shut-down of the entire system. Also, it ac-
cepts requests from the Decision component to kill Baseline or Complex.

The specification presented below includes an implementation of the proposed solution to the
race condition problem that was detected by the FDR and presented in the previous section.

Component UpgradeManager
Port ToReplac ementUni tiDecision, Baseline, Complex, PhysicalIO} = Pub 1 i sherLi f eCyc 1 e
Port FromReplacementUnits = SubscriberLifeCycle
Computation =

ToReplacementUnitDecision. getSendAccess -4
ToReplacementUnitphysicalo. getsenaLAccess --

FromReplacementunits. subscribe --

WILLINGTOSTARTBASELINE
where

CMU/SEI-96-TR-006 33

WILLINGTOSTARTBASELINE=
readUserlnpu -4 fromUser.startBaseline -

ToRepl acementUnitEBaseline.I get Send~c ces s
ToReplacementUnitEBaseline. send! sta-rt-*
FromReplacementUnits rece-ive -4

FromReplacementUnits.return.Baseline.initDone -

raiseBaselinePrio --4

(convergenceDeteCt-ed -4
ToRepJlacementUn2.tBaseline. send! enableOutput -4

ToReplacementUniEDecision* send!I baselineRunining -

WILLINGTOSTARTCOMPLEX

F1
convergenceTimeout - KILLEASELINE)

WILLINqGTOSTARTCOMPLEX
readUserinp-ut --4

(fromUser. startComplex -~STARTCONPLEX

[]
fromUser.killBaseline -

ToReplacexnentUni2tD,,ision. send! userKilJ.Bas-el-ine -4

FromReplacementUnits .receive --*
(FromReplacementUnits.return.Decision.acknowledge -

KILLEASELINE

FromReplacementUnits.return.Decison.killBaseline -4
KILLEASELINE))

Fl
FromRepJlaceznentUnits .recei-ve -4

FromReplacementUnits.return.Decision.killBaseline -->
KILLBASELINE

KILLEASELINE =
lowerBaselinePrao ---
ToReplacementUniE78aseline. send! kill ->

FromReplacementUnits .rece-ive ->

FromReplacementUnits .return. Baseline, dead -

ToReplacementUnitE1aseline. releaseSendAcces ->

WILLINGTOSTARTBASELINE
STARTCOMPLEX =

ToReplacementUni-Complex.-g-e-S-en-d~cce-ss -4

ToRepla~cementUnitComplex. Ben-d!start -4

FromReplacementUnits .receive --*
FromReplacementUnits .return. Complex. initDone -

raiseComplexlyri~o -4

(convergenceTiMeout --> KILLCOMPLEX
F1
convergenceDetectE -4 COMPLEXCONVERGED)

KILLCOMPLEX =
lowerComplexPriii -4
ToReplacementUnit.Complex. send! Mil ---

FromReplacementUnits .rece-ive -4

FromReplacementUnits return. Complex. dead -4

ToReplacementUnit-Compiex.releaseSendAccegss ---

WILL INGTOSTARTCONPLEX

34 CMU/SEI-96-TR-006

COMPLEXCONVERGED =
ToReplacementUnitComplex. send! enableOutput -4

(ToReplacementUnitDecision. send! complexRunning -•

(readUserlnput -4 fromUser.killComplex -->
ToReplacementUnitDecision. send! userKillComplex -4
FromReplacementUnits. receIve -4
(FromReplacementUnits.return.Decision.acknowledge -4
KILLCOMPLEX

[]
FromReplacementUnits.return.Decision.killComplex -*

KILLCOMPLEX)
Fl
FromReplacementUnits. receive -4
FromReplacementUnits.return.Decision.killComplex -4
KILLCOMPLEX)

F1
FromReplacementUnits. receive -4
FromReplacementUnits.return.Decision.killBaseline -*

lowerComplexPrio -4
ToReplacementUnitcomplex. send! kill -M

FromReplacementUnits. receive -4
FromReplacementUnits. return. Complex. dead -*

KILLBASELINE)

4.2.5 Decision Component

The Decision component receives the output sent by the safety controller and the untrusted
controllers (Baseline and Complex) and decides which one to send to the controlled plant, and
sends it to the physical I/O component. Initially, Decision takes the output from the safety con-
troller, which is a built-in procedure inside Decision. When the Baseline component is started,
Decision starts to take its output instead of the safety controller's output, and keeps taking
Baseline's output until it detects a safety hazard or it is told by the Upgrade Manager that the
user wants to kill Baseline. Possible safety hazards include the plant going to an unsafe state
(leaving the safety region), and Baseline sending illegal output or missing its deadline. When

Decision detects a safety hazard, it returns to take the output from the safety controller and

asks the Upgrade Manager to kill Baseline.

If the Complex controller is started while Decision is taking Baseline's output, Decision starts

to take Complex's output instead, and keeps doing so until it detects a safety hazard or it is
told by the Upgrade Manager that the user wants to kill Complex. If the former case, Decision
asks the Upgrade Manager to kill Complex, and temporarily takes the output from the a safety

controller until the plant is in a safe state again. Then, it switches to take Baseline's output and

things continue as described above. In the latter case, Decision just switches to take Base-

line's output.

Component Decision
Port ToUpgradeManager = PublisherLifeCycle
Port FromUpgradeManager = SubscriberLifeCycle
Port ToPhysicallO = PublisherLifeCycle

CMU/SEI-96-TR-006 35

Port FromPhysicallo = SubscriberLifeCycle
Port FromUntrustedControllers = SubscriberLifeCycle
Port CallSafety = invoke -4 -retEu-r-wy- -4 CallSafety
Computation =

ToUpgradeManager .getSendAccess --4
FromUpgradeManager. subscr-iB-e
ToPklysicaZllO.getSendAccegss -4
FromPliysicalIO. subscribýe
FromUntrustedControl].ers. SubScrib.5e -
SAFETYLOOP

where
SAFETYLOOP=

FromPliysicalIp.re-ceive -

n?cntrlout -4

ToPhiysicall0. send! cntrloutE -4 SAFETYLOOP
[]
FromPhysical10. return, safe -

(FromUpgradeManager. receive -4
FromUpgrade~anager. return.baselineRunning -

BASELINESAFE

F1
Cal].Safety.invok -4 CallSafety.return?cntrlout -4
ToPhysicallO.send!cntrlot- SAFETYLOOP))

BASELINELOOP =
FromPhysicall0.r-c-elve --4

(FromPhysicallO .return .unsafe -

Cal I Safety. invoke --4 Cal lSaf ety. return? cntrlout -4

ToFhyS2.ca± 0. send! cntrl-outý --4

ToUpgrade~anager. send! killBasellne --4 SAFETYLOOP

FromPhysicallO.return. safe -4
(FromUpgrade~anager. rece-Ive -4
FromUpgrade~anager. return. complexRunning 3

COMPLEXSAFE
F~1
BASELINESAFE)

[1
FromUpgradexanager. receive -

FromUpgradeManager. return. userKillBaseline --4
ToUpgrade~anager. send! ackniowl-edge -4 SAFETYLOOP

BASELINESAFE =
FromUntrustedControllers receiveWitliTimeout-*E
(FromUntrustedControllers .return. Baseline .cntrlout ->

ToPlaysicallO. send!cntrlout -ý BASELINELOOP

FromUntrustedControllers .return.Baseline. illegalout -4
ToUpgrade~anager. send! kiliBaseline -4
CallSafety.invoke -4 Cal lSaf ety. return? cntrlout -4

ToPhysicallO. send! cntrioit- SAFETYLOOP

FromUntrustedControllers .timeout -4

ToUpgrade~anager. sends kili~aseline'-
Call Safety. invoke -4 Cal lSaf ety. return? cntrlout -

ToPliysicallO. send! cntrJiou -4 SAFETYLOOP

36 CMUISEI-96-TR-006

COMPLEXLOOP =
FromPhysicallO.r-celve -

(FromPhysicallO.return.unsafe -

Cal ISafety. invoke -) Call Safety. return? cntrlout -
ToPhysica]. 1. send! cntrIlo-ut` --4
ToUpgradeManager. send! killComplex -

TEMPSAFETYLOOP

FromPhysicall0. return. safe -> COMPLEXSAFE)
Fl
FromUpgradeManager. receive -

FromUpgradeManager. return.userKillComplex -

ToUpgradexanager. send! acknowledge -4
BASELINELOOP

COMPLEXSAFE =
FromUntrustedControllers receiveWithiTimeout -

(FromUntrustedControllers .return. Complex. cntrlout -4
ToPliysical.IO. send! cntrlout --4 COMPLEXLOOP

[]
FromUntrustedControllers .return.Complex. illegalout -

ToUpgradeManager. send! kiliComplex - BASELINESAFE
E 3
FromUntrustedControllers .timeout -4
ToUpgradeManager. send! kaillComplex -~BASELINESAFE)

TEMP SAFETYLOOP =
FromPhxysicall0.rec-eive -

(FromPhysicaizo. return, safe -> BASELINESAFE
I:]
FromPhysicalIO. return.unsafe -

CallSafety.invok -4 CallSafety.return?cntrlout -
ToPhYSiysCal 10. send! cntrl-out-E TEMPSAFETYLOOP

4.2.6 Safety Controller Component

The SafetyController component is a trusted controller that has been extensively tested and/or
formally verified. It is the default controller and the last resort in case of failure of the untrusted
controllers (Baseline and Complex).

Component SafetyController
Port DeclareSafety = invoke -4 returnly -4 DeclareSafety
Computation =

DeclareSafety, invoke -

Dec IareSaf ety. return! cntrl1o-ut-'; Computation

CMU/SEI-96-TR-006 37

4.2.7 Untrusted Controller Component

The UntrustedController component represents any type of controller that has a better perfor-

mance than the safety controller but that may not be as reliable as the safety controller. Un-

trusted controllers are assumed to fail at any time by producing an illegal output or by missing
its deadline (not producing its output in time, or falling into infinite loop). In the Uni-processor

Simplex architecture there are two untrusted controllers: Baseline and Complex (Complex is
supposed to be more sophisticated than Baseline, thus providing better performance, but per-
haps less reliability).

Component UntrustedController (id: {Baseline, Complex})
Port ToUpgradeManager = PublisherLifeCycle
Port FromUpgradeManager = SubscriberLifeCycle
Port ToDecision = PublisherLifeCycle
Port FromPhysicallO = SubscriberLifeCycle
Computation =

ToUpgradeManager.getSendAccess -•

FromUpgradeManager.subscribe -e

FromUpgradeManager.receive-•romUpgradeManager.return.start-4
ToDecision.getSendAccess -4 FromPhysicalIO.subscribe -1

ToUpgradeManager.send!id. initDone -e
FromUpgradeManager.receive -*
(FromUpgradeManager.return.enableOutput -4

CONTROLLERRUNNING
[]
FromUpgradeManager. return. kill -- CONTROLLERKILLED)

where
CONTROLLERRUNNING =

ToDecision.send!id.cntrlout -4 CONTROLLERRUNNING
[1
ToDecision.send!id.illegalout ->- CONTROLLERRUNNING
Fl
CONTROLLERRUNNING
[1
FromUpgradeManager.receive -4

FromUpgradeManager. return. kill -4 CONTROLLERKILLED

CONTROLLERKILLED =
ToDecision.releaseSendAccess -• ToPhysicallO.unsubscribe -4
ToUpgradeManager.send!id.dead -f

ToUpgradeManager.releaseSendAccess-
FromUpgradeManager.unsubscribe -4 Computation

4.2.8 Physical 1/O Component

The PhysicallO component provides physical I/O services to the other components in the sys-

tem. It is the only component that has access to the I/O devices. It reads input from the plant

sensors and broadcasts it to the appropriate components, and writes output from Decision to

the plant control devices.

Component PhysicallO

38 CMU/SEI-96-TR-006

Fort ToUpgradeManager = PublisherLifeCycle
Port FromUpgradeManager =SubscriberLifeCycle
Port FromDecision = SubscriberLifeCycle
Port ToPhysicallnputSubscribers = PublisherLifeCycle
Computation =

ToUpgradelvanager getSendAccess -

FromUpgradeManager. subscr-ibe -

FromDedision. subscribe ->

ToPhysica±InputSubscribers.getSenda~cce-ss -4

(INPUT II OUTPUT)
where
INPUT

readPlantSensors -4 fromPlant?sensorlnputs -4

ToPliySi1cal input subscribers. send! sensorlnput s -~INPUT

OUTPUT =
FromDecision. receive --4 FromDec is ion. return?I10conimand -

writeToPJlantControlDevices il~comman -4 OUTPUT

CMUISEI-96-TR-006 39

40
CMU/SEI-96-TR-006

5 Conclusions

The main strength of the Wright notation is that it decouples the specification of externally ob-
servable behavior (i.e., external interfaces) from the internal behavior (i.e., internal flow of con-
trol) of architectural components. Also, the Wright connectors capture the interconnection
mechanisms required by the architecture as first class entities. This feature enhances the op-
portunities for reuse, as connectors can be made explicit and decoupled from the application
components. As an example, consider the Distribution Tag connector presented in Section
4.2.2 that can be reused in any other application because of its application independence.

However, Wright does not offer checking of system-wide properties. The available Wright tools
allow the developers to check only properties local to each component. By deriving the Wright
model from the CSP model we gained confidence in the robustness of the system.

Proving deadlock-free using FDR is very useful. Independently of what deadlock-free means
in the system being modeled, the FDR checker may help in revealing race conditions and
checking that the model is consistent and well-formed.

During the preparation of this work we verified empirically the effectiveness of peer reviews for
inspecting specifications. That allowed us to identify and remove subtle defects present in pre-
vious versions of the models. The rigor of design reviews can be as great as the rigor of code
inspections thanks to the precision of formal notation. In the context of software development
this technique allows the correction of errors early on in the process when it is cheaper to re-
move them.

We showed empirically the power of formal specifications and model checkers to detect sub-
tleties in design that otherwise cannot be uncovered until later stages of the product life cycle.
A formal specification of the software architecture can be very useful as a guidance for devel-
oping better testing strategies and test cases (e.g., by identifying dependencies, complex in-
teractions, etc.). It is important to interpret counter-examples provided by the FDR checker in
the context of reality. However, be aware that there are three possible causes behind the
checking failure:

* the representation of the property is not well-formed

* the model is ill-formed and the counter-example reveals the problem

* the system being modeled has a flaw that is revealed by the model checker.

Upon discovery of a counter-example these three possibilities should be followed as a check-
list. An example of the problems found in the system being modeled is the divergence present-
ed in Section 3.6.4.

On the other hand, the formal model is not defect free either. In spite of many meetings be-
tween the designers of the Simplex architecture and the developers of the Wright and CSP
descriptions, there is at least one serious error in the descriptions as presented here. Property
5 on page 22 states, "Whenever the plant is in safe state and is being controlled by the com-

CMU/SEI-96-TR-006 41

plex controller, if the complex controller does not produce an output on time (i.e. it misses its
deadline or falls into an infinite loop) ...illegal, the control of the device is passed to the baseline

controller (or to the safety controller, in case the baseline controller fails)." This property is said
to be verified by the FDR. However, there is a counter example. In the CSP model, the up-
grade manager has priority lower than the controllers. Suppose that the complex controller en-

ters an infinite loop. Since the upgrade manager has the lowest priority, the upgrade manager
will be preempted by the complex controller and therefore cannot take the control from it and
give it to the baseline controller. On the other hand, assigning a higher priority to the upgrade

manager would also be incorrect, since the process creation and destruction operation is very

time consuming. Given high priorities, such actions will cause real-time tasks to miss their

deadlines.

In reality the upgrade manager is multi-threaded. It has a higher priority thread that manages
the change of priorities and issues commands. The low priority thread carries out the actual
process management. Thus, when complex enters an infinite loop, the high priority thread of
the upgrade manager can lower complex's priority and then the lower priority thread of the up-
grade manager can then kill the complex process at its leisure.

The problem with the CSP model is that events are not modeled as preemptable. That is, if

the process that processes certain events is preempted, the said events will not occur. If the
events are modeled as the results of executing processes, FDR should be able to show that
property 5 is false until the upgrade manager is modeled as multi-threaded processes with one
thread's priority higher than the applications and another thread's priority lower than the appli-
cations.

From the viewpoint of system architecture modeling, this problem is a result of the level of ab-
straction chosen for the architectural description. Choosing the right level to highlight the key
features of the architecture without resulting in an overly complex description is not an easy
job. In the case of the Simplex architecture description it may have been possible to choose a
lower level abstraction that would have allowed for the modeling of preemptability and priori-
ties of concurrent processes. Although this was suggested a number of times during the mod-
eling, it was rejected on the grounds that this would complicate the model, making it even
harder to understand. It was conjectured that the current level of abstraction would be ade-
quate. In retrospect, the real reason for this was probably that the specification techniques and
tools did not provide facilities to represent time explicitly.

Since it is difficult to determine what level of abstraction is appropriate a priori, it may be nec-
essary to perform a separate schedulability modeling analysis in addition to the Wright and
CSP models when real-time systems are involved. The real-time issue should be addressed
in the future, perhaps by somehow marrying the current Architectural Description Language
technologies with Rate Monotonic Scheduling theory.

42 CMU/SEI-96-TR-006

6 Acknowledgments

An earlier version of this paper appeared as a CMU School of Computer Science Report,
CMU-CS-95-224 by Jos6 German Rivera and Alejandro Andr~s Danylyszyn under the title
Formalizing the Uni-processor Simplex Architecture. That research was sponsored in part by
the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF,
and the Advanced Research Projects Agency (ARPA) under grants F33615-93-1-1330 and
N66001-95-C-8623; and by National Science Foundation Grant CCR-9357792. Views and
conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of Wright Laboratory, the US
Department of Defense, the United States Government, or the National Science Foundation.
The US Government is authorized to reproduce and distribute reprints for Government pur-
poses, notwithstanding any copyright notation thereon.

The authors would like to thank professor David Garlan for his advice and review comments,
which were very valuable and gave insight to define the strategy for specifying the Simplex
architecture.

CMU/SEI-96-TR-006 43

44 CMU/SEI-96-TR-006

Appendix A CSP Models of Simplex

A.1 CSP Model Without Upgrade Manager

-- CSP Model of the overall dynamic behavior for the
-- Uni-processor Simplex Architecture.

-- Author: Jose German Rivera
-- Alejandro Andres Danylyszyn

-- Created: 10/4/95 - Initial version: Upgrade Manager
-- not included.

- - Channel Alphabets

-- Events received from the controlled plant:
FROMPLANT = (safe, unsafe)

-- Events sent to the controlled plant:
TOPLANT = {cntrlout}

-- Events generated by the controllers:
CNTRLEVT = {cntrlout, failstop, illegalout, responseTimeout)

-- Event sent to the controllers:
TOCNTRL = (kill)

-- I Channel Declarations I

pragma channel fromPlant, fromIO: FROMPLANT
pragma channel toPlant, toIO: TOPLANT
pragmachannelfromComplex, fromBaseline, fromSafety:CNTRLEVT
pragma channel toComplex, toBaseline, toSafety: TOCNTRL

-- j Process Definitions I

-- Simplex architecture:

SIMPLEX = (DECISION[I (I froml0, tolo 1) 13
PHYSICALIO)
[I (1 fromComplex, toComplex, fromBaseline, toBaseline,
fromSafety, toSafety I)
(COMPLEX III BASELINE I SAFETY)

CMU/SEI-96-TR-006 45

-- Decision Component:

DECISION = COMPLEXLOOP

COMPLEXLOOP = fromlO.unsafe -> fromSafety.cntrlout ->

toIO!cntrlout ->

toComplexlkill ->TEMPSAFETYLOOP

fromlo.safe ->(fromComplex.cntrlout ->toIO!cntrlout ->

COMPLEkLOOP

(]x: {illegalout, responseTimeout}
fromComplex.x -> toComplex!kill ->

BASELINE SAFE)

fromComplex. failstop -> BASELINESAFE)

EASELINESAFE = from~aseline.cntrlout -> toIO!cntrlout -

EASELINELOOP

1]
fromBaseline.failstop -> fromSafety.cntrlout -

toIO!cntrlout -> SAFETYLOOP

BASELINELOOP = fromIO.unsafe -> fromSafety.cntrlout -

toIO!cntrlout ->

toBaselinelkill -> SAFETYLOOP

[]mOsf >BSLNSF

TEMPSAFEfromOLOaf ->mI~sf ->ASELINESAFE

fromlO.unsafe ->fromSafety.cntrlout -> toIO~cntrlout ->

TEMPSAFETYLOOP

SAFETYLOOP = fromlO?x -> fromSafety.cntrlout -> toIO!cntrlout
-> SAFETYLOOP

-- Physical I/O component:

PHYSICALIO = INPUT III OUTPUT

-- Take input from Plant:
INPUT = fromPlant?status -> fromlo!status -> INPUT

-- Send output to Plant:
OUTPUT = toIO?command -> toPlant!command -> OUTPUT

-- Complex Component:

COMPLEX =(IIx: {cntrlout, illegalout, responseTimeout)
fromComplex!x -> COMPLEX)
1]
toComplex.kill -> SKIP)

(fromComplex!failstop -> SKIP

46 CMU/SEI-96-TR-006

[]
toComplex.kill -> SKIP)

-- Baseline Component:

BASELINE = (fromBaseline!cntrlout -> BASELINE

toBaseline.kill -> SKIP)

(fromBaseline!failstop -> SKIP
[]

toBaseline.kill -> SKIP)

-- Safety Component:

SAFETY = fromSafety!cntrlout -> SAFETY

-- I Properties to verify

-- Auxiliary definitions:
SIGMA = {0 fromPlant, toPlant, fromIO, toIO,

fromComplex, fromBaseline, fromSafety,
toComplex, toBaseline, toSafety I0

pragma channel e

-- Property 1. Deadlock-free.
-- I- P1 is failure-divergence-refined by PISIMPLEX

-- where:

P1 = e -> P1

PISIMPLEX = identify (SIGMA, e, SIMPLEX)

-- Property 2. Control commands are sent to the plant
infinitely often. That is,
-- it is never the case that from a given instant commands are
not sent
-- to the plant anymore.

-- I - P2 is failure-divergence-refined by P2SIMPLEX
-- where:

P2 = 1-1 x: TOPLANT @ toIO!x -> P2

P2SIMPLEX = SIMPLEX \ diff (SIGMA, (I toIO I})

-- Property 3. It is never the case that there are two
-- consecutive readings from
-- the plant without an output command between them. In other
-- words, after

CMU/SEI-96-TR-0Q6 47

-- reading the status of the plant, and before performing the
-- next reading,
-- a command has to be sent to plant. (This could be a way of
-- detecting that
-- a deadline was missed)

- P3 is trace-refined by P3SIMPLEX
-- where:

P3 = fromIO?x -> toIO!cntrlout -> P3

P3SIMPLEX = SIMPLEX \ diff (SIGMA, {I fromiO, toIO I})

-- Property 4. After unsafe condition the plant is immediately
-- controlled by
-- safety, and as long as it is unsafe it remains in control
-- by safety:

I- P4 is trace-refined by P4SIMPLEX
-- where:

P4 = fromIO.unsafe -> fromSafety.cntrlout -> toIO.cntrlout ->
P4

I-I
fromIO.safe-> (I-I c: {fromComplex, fromBaseline, fromSafety

c.cntrlout -> toIO.cntrlout -> P4)

P4SIMPLEX = SIMPLEX \ diff (SIGMA, {I fromlO, tolO,
fromSafety.cntrlout,
fromComplex.cntrlout,
fromBaseline.cntrlout IM)

-- Property 5. Whenever the plant is in safe state and is being
-- controlled
-- by the complex controller, if the complex controller does
-- not
-- produce an output on time (i.e. it misses its deadline or
-- falls into an
-- infinite loop) or if the output is illegal, the control of
-- the .device is
-- passed to the baseline controller (or to the safety
-- controller, in case
-- the baseline controller fails).

--hI- P5 is trace-refined by P5SIMPLEX
-- where:

P5 = fromIO.safe ->
((II x: (illegalout, responseTimeout, failstop) @
fromComplex.x -> (I-I c: (fromBaseline, fromSafety} 0
c.cntrlout -> P5))

(c: (fromComplex, fromBaseline, fromSafety} @c.cntrlout
-> PS)

)
I-I
fromIo.unsafe -> fromSafety.cntrlout -> PS

48 CMU/SEI-96-TR-006

P5SIMPLEX = SIMPLEX \ diff (SIGMA, (I fromIO, fromComplex,
fromBaseline.cntrlout,
fromSafety.cntrlout I)M

A.2 First Attempt at a CSP Model with Upgrade Manager

- - CSP Model of the overall dynamic behavior for the
-- Uni-processor Simplex Architecture.

-- Author: Jose German Rivera
-- Alejandro Andres Danylyszyn

-- Created: 10/4/95 - Initial version: Upgrade Manager
-- not included.
-- jUpdated: 11/12/95 - Included Upgrade Manager. It has a
-- problem: properties 1-2 are not
- - satisfied due to the fact that some
-- special cases of starting Complex
-- or killing Baseline/Complex were
-- not considered. Property 6 added.

-- I Channel Alphabets

-- Events received from the controlled plant:
FROMPLANT = (safe, unsafe)

-- Events sent to the controlled plant:
TOPLANT = {cntrlout)

-- Events generated by the controllers:
CNTRLEVT = {cntrlout, illegalout, responseTimeout)

-- Events sent from the Upgrade Manager to the controllers:
UMtoCTRL = (start, enableOutput, kill)

-- Events sent from the controllers to the Upgrade Manager:
CTRLtoUM = {initDone, dead)

-- Events sent from Decision to the Upgrade Manager:
DtoUM = {killBaseline, killComplex}

-- Events sent from the Upgrade Manager to Decision:
UMtoD = (baselineRunning, complexRunning, userKillBaseline,
userKillComplex}

-- Events Received from the user:
FROMUSER = (startBaseline, startComplex, killBaseline,
killComplex}

CMU/SEI-96-TR-006 49

--jChannel Declarations

pragma channel fromPlant, fromIO: FROMPLANT
pragma channel toPlant, toIO: TOPLANT
pragmachannelfromComplex, fromBaseline, fromSafety: CNTRLEVT
pragma channel U~toComplex, U~toBaseline: UMtoCTRL
pragma channel ComplexToUM, BaselineToUM: CTRLtoUM
pragma channel DecisionToUM: DtoUM
pragma channel U~toDecision: UMtoD
pragma channel fromUser: FROMUSER

--IIndependent events observed/produced
-- by the Upgrade Manager

pragma channel convergence~ietecte
pragma channel convergselnce~ieou
pragma channel raise~aseliexPrio
pragma channel rais~aelompexPrio
pragma channel lower~omeliexPrio

-- Process Definitions

-- Simplex architecture:

SIMPLEX=
UPGRADEMGR
[I (I UMtoComplex, ComplexToUM, UMtoBaseline, BaselineToUM,
DecisionToUM, UMtoDecision 1) 13
((DECISION
[I (I fromcomplex, from~aseline, fromSafety 1) 13
(COMPLEX II BASELINE II SAFETY))

PHYSICALIO)

-- Upgrade Manager Component:

UPGRADEMGR = WILLINGTOSTARTEASELINE

WILLINGTOSTARTEASELINE=
fromUser.startBaseline ->UMtoBaseline!start -

BaselineToUM.initDone ->raiseBaselinePrio ->
(convergenceDetected -> U~toBaseline !enableOutput -

UMtoDeci sion! basel ineRunning -> WILLINGTOSTARTCOMPLEX

1.-1
convergenceTimeout -> KILLEASELINE)

WILLINGTOSTARTCOMPLEX=
fromUser. startComplex ->STARTCOMPLEX

[1
DecisionToUM.killBaseline -> KILLBASELINE

50 CMU/SEI-96-TR-006

I I
fromUser.kill~aseline -> UMtoDecision!userKill~aseline -

KILLBASELINE

KILLBASELINE=
lower~aselinePrio -> U~toBaseline!kill ->

BaselineToUMv. dead -> WILLINGTOSTARTBASELINE

STARTCOMPLEX =
U~toComplex! start->ComplexToUM.initDone->raiseComplexPrio

(convergenceTimeout -> KILLCOMPLEX

1-1
convergenceDetected -> UMtoComplex!enableOutput ->

U~toDecision!complexRunning ->
(fromUser.killComplex -> U~toDecision!userKillComplex ->

KILLCOMPLEX
13
DecisionToUM.killComplex -> KILLCOMPLEX))

KILLCOMPLEX =
lowerComplexPrio -> U~toComplex!kill -> ComplexToUM.dead ->
WILLINGTOSTARTCOMPLEX

-- Decision Component:

DECISION = SAFETYLOOP

SAFETYLOOP =
fronIlO.unsafe -> fromSafety.cntrlout -> toIO!cntrlout ->
SAFETYLOOP
[]
fromlO. safe-> (U~toDecision.baselineRunning -> EASELINESAFE

1]
fromSafety.cntrlout -> tolOlantrlout ->
SAFETYLOOP)

BASELINELOOP=
fromlO.unsafe -> fromSafety.cntrlout -> toIOicntrlout ->
DecisionToUM! kiliBaseline -> SAFETYLOOP

fromlO.safe -> (UMtoDeci sion. complexRunning -> COMPLEXSAFE

BASELINESAFE)

U~toDecision.userKillBaseline -> SAFETYLOOP

BASELINESAFE =
from~aseline.cntrlout -> toIOicntrlout -> BASELINELOOP
1]
(1] x: (illegalout, responseTimeout) 0
fromBaseline.x -> DecisionToUM!killBaseline ->
fromSafety.cntrlout -> toIO!cntrlout -> SAFETYLOOP)

COMPLEXLOOP =
fromlO.unsafe -> fromSafety.cntrlout -> toIO!cntrlout ->

DecisionToUM IkillComplex -> TEMPSAFETYLOOP

CMU/SEI-96-TR-006 51

H]
fromlO.safe -> COMPLEXSAFE
I I
UMtoDecision-userKillComplexc -> BASELINELOOP

COMPLEXSAFE
fromComplex.cntrlout -> toIO!cntrlout ->COMPLEXLOOP

(Jx: {illegalout, responseTimeout)
fromComplex.x -> DecisionToUM!killComplex -

BASELINESAFE)

TEMPSAFETYLOOP=
fromIO.safe -> BASELINESAFE

fromIO.unsafe -> fromSafety.cntrlout -> toIO!cntrlout -

TEMPSAFETYLOOP

-- Safety Component:

SAFETY = fromSafetylcntrlout -> SAFETY

-- Baseline Component:

BASELINE=
UMtoBaseline.start -> BaselineToUM!initDone -

(U~toBaseline. enableOutput -> BASELINERUNNING

UMtoBaseline.kill -> BaselineToUMldead -> BASELINE)

BASELINERUNNING =
(1-1 x: (cntrlout, illegalout, responseTimeout)
fromBaseline lx -> BASELINERUNNING)

UMtoBaseline.kill -> BaselineToUMldead -> BASELINE

-- Complex Component:

COMPLEX =I
U~toComplex. start -> ComplexToUM! initDone -

(U~toComplex. enableOutput -> COMPLEXRUNNING

UMtoComplex.kill -> ComplexToUMldead -> COMPLEX)

COMPLEXRUNNING =
(1-1 x: (cntrlout, illegalout, responseTimeout) 0
fromComplexlx -> COMPLEXRUNNING)

UMtoComplex.kill -> ComplexToUM!dead ->COMPLEX

-- Physical I/O component:

PHYSICALIO =INPUT III OUTPUT

52 CMU/SEI-96-TR-006

-- Take input from the Plant:
INPUT = fromPlant?status -> fromIO!status -> INPUT

-- Send output to the Plant:
OUTPUT = toIO?command -> toPlanticommand -> OUTPUT

-- I Properties to verify

-- Auxiliary definitions:
SIGMA = {I fromUser, fromPlant, toPlant, fromlO, tolO,

fromComplex, fromBaseline, fromSafety,
UMtoComplex, UMtoBaseline, ComplexToUM,
BaselineToUM, DecisionToUM, UMtoDecision,
convergenceDetected,
convergenceTimeout,
raiseBaselinePrio,
raiseComplexPrio,
lowerBaselinePrio,
lowerComplexPrio I)

pragma channel e

-- Property 1. Deadlock-free.
-- - P1 is failure-divergence-refined by PISIMPLEX
-- where:

P1 = e -> P1

PISIMPLEX = identify (SIGMA, e, SIMPLEX)

-- Property 2. Control commands are sent to the plant
-- infinitely often. That
-- is, it is never the case that from a given instant commands
-- are not sent
-- to the plant anymore.
-- I- P2 is failure-divergence-refined by P2SIMPLEX
-- where:

P2 = 1-1 x: TOPLANT 0 toIO!x -> P2

P2SIMPLEX = SIMPLEX \ diff (SIGMA, {I tolO I})

-- Property 3. It is never the case that there are two
-- consecutive readings
-- from the plant without an output command between them. In
-- other words,
-- after reading the status of the plant, and before performing
-- the next
-- reading, a command has to be sent to the plant. (This could
-- be a way of
-- detecting that a deadline was missed)

I- P3 is trace-refined by P3SIMPLEX

CMU/SEI-96-TR-006 53

-- where:

P3 = fromIO?x -> toIO!cntrlout -> P3

P3SIMPLEX = SIMPLEX \ diff (SIGMA, {I fromIO, toIO I})

-- Property 4. After unsafe condition the plant is immediately
-- controlled by
-- safety, and as long as it is unsafe it remains in control
-- by safety:

I- P4 is trace-refined by P4SIMPLEX
-- where:

P4 = fromlO.unsafe -> fromSafety.cntrlout -> toIO.cntrlout ->
P4

I- I
fromIO.safe-> (1-1 c: (fromComplex, fromBaseline, fromSafety

c.cntrlout -> toIO.cntrlout -> P4)

P4SIMPLEX = SIMPLEX \ diff (SIGMA, {I fromIO, tolO,
fromSafety.cntrlout,
fromComplex.cntrlout,
fromBaseline.cntrlout IW)

-- Property 5. Whenever the plant is in safe state and is being
-- controlled
-- by the complex controller, if the complex controller does
-- not
-- produce an output on time (i.e. it misses its deadline or
-- falls into an
-- infinite loop) or if the output is illegal, the control of
-- the device is
-- passed to the baseline controller (or to the safety
-- controller, in case
-- the baseline controller fails).

I- P5 is trace-refined by P5SIMPLEX
-- where:

P5 = fromIO.safe ->
((I-I x: (illegalout, responseTimeout) 0
fromComplex.x -> (1-1 c: (fromBaseline, fromSafety} @
c.cntrlout -> P5))

(I-I c: {fromComplex, fromBaseline, fromSafety} @ c.cntrlout
-> P5))

fromIO.unsafe -> fromSafety.cntrlout -> P5

P5SIMPLEX = :SIMPLEX \ diff (SIGMA, {j fromIO, fromComplex,
fromBaseline.cntrlout,
fromSafety.cntrlout M)

54 CMU/SEI-96-TR-006

-- Property 6. Whenever Complex is started, Baseline has to be
-- running, and
-- it never happens that there is more than one Baseline or
-- more than one
-- Complex running.

I - P6 is trace-refined by P6SIMPLEX
-- where:

P6 = UMtoBaseline.start -> P6AUX
P6AUX = UMtoComplex.start -> UMtoComplex.kill -> P6AUX

1-1
UMtoBaseline.kill -> P6

P6SIMPLEX = SIMPLEX \ diff (SIGMA, (UMtoBaseline.start,
UMtoBaseline.kill,
UMtoComplex.start, UMtoComplex.kill })

A.3 Final Attempt at a CSP Model with Upgrade Manager

- - CSP Model of the overall dynamic behavior for the
-- Uni-processor Simplex Architecture.

-- Author: Jose German Rivera
-- Alejandro Andres Danylyszyn

-- Created: 10/4/95 - Initial version: Upgrade Manager
-- not included.
-- IUpdated: 11/12/95 - Included Upgrade Manager. It has a
-- problem: properties 1-2 are not
-- satisfied due to the fact that some
-- special cases of starting Complex
-- or killing Baseline/Complex were
-- not considered. Property 6 added.
-- Updated: 11/24/95 - Property 1 now is satisfied, but
- - property 2 is not completely
-- satisfied (check2 succeeds but not
-- checkl); reason being a divergence
-- caused by lack of fairness in FDR.

-- ~ Channel Alphabets

-- Events received from the controlled plant:
FROMPLANT = (safe, unsafe)

-- Events sent to the controlled plant:
TOPLANT = {cntrlout}

-- Events generated by the controllers:
CNTRLEVT = {cntrlout, illegalout, responseTimeout)

CMU/SEI-96-TR-006 55

-- Events sent from the Upgrade Manager to the controllers:
UMtoCTRL = (start, enableoutput, kill)

-- Events sent from the controllers to the Upgrade Manager:
CTRLtoUM = {initDone, dead)

-- Events sent from Decision to the Upgrade Manager:
DtoUM = (kiliBaseline, killComplex}

-- Events sent from the Upgrade Manager to Decision:
UMtoD = (baselineRunning, complexRunning, userKiliBaseline,
userKillComplex}

-- Events Received from the user:

kill Complex)

-- Channel Declarations

pragma channel fromPlant, fromlO: FROMPLANT
pragma channel toPlant, toIO: TOPLANT
pragma channel fromComplex, fromBaseline, fromSafety: CNTRLEVT
pragma channel U~toComplex, UMtoBaseline: UMtoCTRL
pragma channel ComplexToUM, BaselineToUM: CTRLtoUM
pragma channel DecisionToUM: DtoUM
pragma channel UMtoDecision: UMtoD
pragma channel fromUser: FROMUSER

-- iIndependent events observed/producedI
--jby the Upgrade Manager

pragma channel convergenceDetected
pragma channel convergenceTimeout
pragma channel raiseBaselinePrio
pragma channel raiseComplexPrio
pragma channel lowerBaselinePrio
pragma channel lowerComplexPrio

-- Process DefinitionsI

-- Simplex architecture:

SIMPLEX=
UPGRADEMGR
[I (I U~toComplex, ComplexToUM, UMtoBaseline, BaselineToUM,
DecisionToUM, U~toDecisionIi]
((DECISION
[I (I fromComplex, fromBaseline, fromsafetyI)I
(COMPLEX II BASELINE SAFETY))

[IfromIO, tolO)]

56 CMU/SEI-96-TR-006

PHYSICALIO)

-- Upgrade Manager Component:

UPGRADEMGR = WILLINGTOSTARTBASELINE

WILLINGTOSTARTBASELINE =
fromUser.startBaseline -> UMto~aseline!start -

BaselineToUM.initDone -> raise~aselinePrio ->
(convergenceDetected -> UMtoBaseline !enableOutput -

UMtoDecision!baselineRunning -> WILLINGTOSTARTCOMPLEX

1-1
convergenceTimeout -> KILLEASELINE)

WILLINGTOSTARTCOMPLEX =
fromUser. startComplex -> STARTCOMPLEX
[]
DecisionToUM.kill~aseline -> KILLEASELINE
1I
fromUser.killBaseline -> (UMtoDecision!userKillBaseline -

KILLEASELINE

DecisionToUM.killBaseline -> KILLEASELINE)

KILLEASELINE =
lowerBaselinePrio -> U~toBaselinelkill ->
BaselineToUM. dead -> WILLINGTOSTARTBASELINE

STARTCOMPLEX =
UMtoComplex! start->ComplexToUM. initDone->raiseComplexPrio

(convergenceTimeout -> KILLCOMPLEX

1-1
convergenceDetected -> UMtoComplex!enableOutput ->
(U~toDecision! complexRunning ->
(fromUser.killComplex ->

(U~toDecisioniuserKillComplex -> KILLCOMPLEX
[1
DecisionToUM.killComplex -> KILLCOMPLEX)
[1
DecisionToUM.killComplex -> KILLCOMPLEX)
13
DecisionToUM.killBaseline -> lowerComplexPrio ->
UMtoComplexlkill -> ComplexToUM.dead -> KILLBASELINE))

KILLCOMPLEX=
lowerComplexPrio -> UMtoComplex!kill -> ComplexToUM.dead ->
WILLINGTOSTARTCOMPLEX

-- Decision Component:

DECISION = SAFETYLOOP

SAFETYLOOP=
fromlO.unsafe -> fromSafety.cntrlout -> toIO!cntrlout ->
SAFETYLOOP

CMU/SEI-96-TR-006 57

fromIO.safe -> (U~toDecision.baselineRunning -> BASELINESAFE

fromSafety.cntrlout -> toIO!cntrlout ->

SAFETYLOOP)

BASELINELOOP
fromlO.unsafe -> fromSafety.cntrlout -> toIO!cntrlout ->
DecisionToUM!killBaseline -> SAFETYLOOP

fromlO.safe -> (UMtoDeci sion. complexRunning -> COMPLEXSAFE

BASELINESAFE)

UMtoDecision.userKill~aseline -> SAFETYLOOP

BASELINESAFE=
from~aseline.cntrlout -> toIO!cntrlout -> BASELINELOOP
[]
(1] x: {illegalout, responseTimeout}
fromBaseline.x -> DecisionToUM!killBaseline ->

fi-omSafety.cntrlout -> toIO!cntrlout -> SAFETYLOOP)

COMPLEXLOOP =
fromlO.unsafe -> fromSafety.cntrlout -> toIO!cntrlout -

DecisionToUM!killComplex -> TEMPSAFETYLOOP
I:]
fromIO.safe -> CONPLEXSAFE
[]
U~toDecision.userKillComplex -> BASELINELOOP

COMPLEXSAFE =
fromComplex.cntrlout -> toIOicntrlout -> COMPLEXLOOP
13
(1] x: (illegalout, responseTimeout)
fromComplex.x -> DecisionToUN!killComplex ->

BASELINESAFE)

TEMPSAFETYLOOP
fromlO.safe -> BASELINESAFE
1]
fromlO.unsafe -> fromSafety.cntrlout -> toIO!cntrlout -

TEMPSAFETYLOOP

-- Safety Component:

SAFETY = fromSafety!cntrlout -> SAFETY

-- Baseline Component:

BASELINE=
tUhto~aseline.start -> BaselineToUM!initDone ->
(U~toBaseline .enableOutput -> BASELINERUNNING
13
U~toBaseline.kill -> BaselineToUMldead -> BASELINE)

58 CMU/SEI-96-TR-006

BASELINERUNNING =
(1-1 x: (cntrlout, illegalout, responseTimeout} @
fromBaselime !x -> EASELINERUNNING)
[3
UMto~aseline.kill -> EaselineToUM!dead -> BASELINE

-- Complex Component:

COMPLEX=
UMtoComplex.start -> ComplexToUM!initDone ->

(U~toComplex. enableOutput -> COMPLEXRUNNING
H]
UMtoComplex.kill -> ComplexToUM!dead -> COMPLEX)

COMPLEXRUNNING =
(1-1 x: {cntrlout, illegalout, responseTimeout) 0
fromComplex!x -> COMPLEXRUNNING)

UMtoComplex.kill -> ComplexToUM!dead -> COMPLEX

-- Physical 1/O component:

PHYSICALIO = INPUT 11OUTPUT

-- Take input from the Plant:

INPUT = fromPlant?status -> fromlO!status ->INPUT

-- Send output to the Plant:

OUTPUT = toIO?comnmand -> toPlant!command ->OUTPUT

--IProperties to verify

-- Auxiliary definitions:
SIG14A = (I fromUser, fromPlant, toPlant, fromlO, tolo,
fromComplex, fromBaseline, fromSafety,
U~toComplex, U~toBaseline, ComplexToUM,
BaselineToUM, DecisionToT.Th, U~toDecision,
convergenceDetected,
convergenceTimeout,
rai seBasel inePrio,
rai seComplexPrio,
lowerBaselinePrio,
lowerComplexPrio }

pragma channel e

-- Property 1. Deadlock-free.
-- I - P1 is f ai lure -divergence -refined by PiSIMPLEX

-- where:

P1 = e -> P1

CMUISEI-96-TR-006 59

PISIMPLEX = identify (SIGMA, e, SIMPLEX)

-- To check this property use: Checkl "P1" "PISIMPLEX";

-- Property 2. Control commands are sent to the plant
-- infinitely often. That
-- is, it is never the case that from a given instant commands
-- are not sent
-- to the plant anymore.
-- I - P2 is failure-divergence-refined by P2SIMPLEX
-- where:

P2 = ~ x: TOPLANT @ toIO!x -> P2

P2SIMPLEX = SIMPLEX \ diff (SIGMA, {I toIO j})

-- To check this property use: Checkl "P2" "P2SIMPLEX";

-- Property 3. It is never the case that there are two
-- consecutive readings
-- from the plant without an output command between them. In
-- other words,
-- after reading the status of the plant, and before performing
-- the next
-- reading, a command has to be sent to the plant. (This could
-- be a way of
-- detecting that a deadline was missed)

I - P3 is trace-refined by P3SIMPLEX
-- where:

P3 = fromIO?x -> toIO!cntrlout -> P3

P3SIMPLEX = SIMPLEX \ diff (SIGMA, {I fromIO, toIO I))

-- To check this property use: CheckTrace "P3" "P3SIMPLEX";

-- Property 4. After unsafe condition the plant is immediately
-- controlled by
-- safety, and as long as it is unsafe it remains in control
-- by safety:

I - P4 is trace-refined by P4SIMPLEX
-- where:

P4 = fromlO.unsafe -> fromSafety.cntrlout -> toIO.cntrlout ->
P4

I-I
fromlO.safe-> (I1I c: (fromComplex, fromBaseline, fromSafety

c.cntrlout -> toIO.cntrlout -> P4)

P4SIMPLEX = SIMPLEX \ diff (SIGMA, {I fromlO, tolO,
fromSafety.cntrlout,
fromComplex.cntrlout,
fromBaseline.cntrlout I})

60 CMU/SEI-96-TR-006

-- To check this property use: CheckTrace "P4" "P4SIMPLEX";

-- Property 5. Whenever the plant is in safe state and is being
-- controlled
-- by the complex controller, if the complex controller does
-- not
-- produce an output on time (i.e. it misses its deadline or
-- falls into an
-- infinite loop) or if the output is illegal, the control of
-- the device is
-- passed to the baseline controller (or to the safety
-- controller, in case
-- the baseline controller fails).

- P5 is trace-refined by P5SIMPLEX
-- where:

P5 = fromIO.safe ->

((I-I x: (illegalout, responseTimeout)
fromComplex.x -> (I-I c: (fromBaseline, fromSafety} C
c.cntrlout -> PS))

(I-•I c: {fromComplex, fromBaseline, fromSafety} @ c.cntrlout
-> P5))
I-I
fromIO.unsafe -> fromSafety.cntrlout -> P5

P5SIMPLEX = SIMPLEX \ diff (SIGMA, {I fromIO, fromComplex,
fromBaseline.cntrlout,
fromSafety.cntrlout 1)

-- To check this property use: CheckTrace "PS" "PSSIMPLEX";

-- Property 6. Whenever Complex is started, Baseline has to be
-- running, and
-- it never happens that there is more than one Baseline or
-- more than one
-- Complex running.

I - P6 is trace-refined by P6SIMPLEX
-- where:

P6 = UMtoBaseline.start -> P6AUX
P6AUX = UMtoComplex.start -> UMtoComplex.kill -> P6AUX

I-I
UMtoBaseline.kill -> P6

P6SIMPLEX = SIMPLEX \ diff (SIGMA, (UMtoBaseline.start,
UMtoBaseline.kill,

UMtoComplex.start, UMtoComplex.kill })

-- To check this property use: CheckTrace "P6" "P6SIMPLEX";

CMU/SEI-96-TR-006 61

62
CMU/SEI-96-TR-006

References

[Allen 94] Allen, Robert & Garlan, David. "Formalizing Architectural Connec-
tion," 71-80. Proceedings of the Sixteenth International Conference
on Software Engineering. Sorrento, Italy, May 16-21, 1994. Long
Beach, CA: IEEE Computer Society Press, 1994.

[FDR 92] Failures Divergence Refinement: User Manual and Tutorial, Ver-
sion 1.3. Oxford, England: Formal Systems (Europe) Ltd., 1992.

[Rajkumar 95] Rajkumar, Ragunathan; Gagliardi, Michael; & Sha, Lui. "The Real-
Time Publisher/Subscriber Inter-Process Communication Model for
Distributed Real-Time Systems: Design and Implementation," 66-
75. Proceedings of the First IEEE Real- Time Technology and Appli-
cations Symposium. Los Alamitos, CA, May 15-17, 1995. Long
Beach, CA: IEEE Computer Society Press.

[Hoare 85] Hoare, C.A.R. Communicating Sequential Processes. Englewood
Cliffs, NJ: Prentice Hall International, 1985.

[Potter 91] Potter, Ben; Sinclair, Jane; & Till, David. An Introduction to Formal
Specification andZ Englewood Cliffs, NJ: Prentice Hall Internation-
al, 1991.

[Sha 95] Sha, Lui; Gagliardi, Michael; & Rajkumar, Ragunathan. "Analytic
Redundancy: A Foundation for Evolvable Dependable Systems,"
Proceedings of the Second ISSA T International Conference on Re-
liability and Quality of Design. Orlando, FL, March 8-10,1995. Inter-
national Society of Science and Applied Technologies, 1995.

CMU/SEI-96-TR-006 63

64
CMU/SEI-96-TR-006

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-96-TR-006 ESC-TR-96-006

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (city, state, and zip code) 7b. ADDRESS (city, state, and zip code)

Carnegie Mellon University HO ESC/ENS
Pittsburgh PA 15213 5 Eglin Street

Hanscom AFB, MA 01731-2116

8a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) F1 9628-95-C-0003

SEI Joint Program Office ESC/ENS

8c. ADDRESS (city, state, and zip code)) 10. SOURCE OF FUNDING NOS.
Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT

Pittsburgh PA 15213 ELEMENTNO NO. NO NO.
63756E N/A N/A N/A

I1. TITLE (Include Security Classification)

An Architectural Description of the Simplex Architecture
12. PERSONAL AUTHOR(S)

Jos6 Germ.n Rivera, Alejandro Andr6s Danylyszyn, Charles B. Weinstock, Lui R. Sha, Michael J. Gagliardi
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT

Final FROM TO March 1996 64

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

FIELD GROUP SUB. GR. simplex architecture, architectural description language, communicating

sequential processes, WRIGHT, failures divergence refinement

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Simplex is a software architecture for dependable and evolvable process-control systems developed by the
Software Engineering Institute. Our project consisted of creating a formal specification of this architecture, and
analyzing its safety and liveness properties. We developed a Communicating Sequential Processes (CSP)
model to describe the overall dynamic behavior of the Simplex architecture, which we verified using the Failure-
Divergence-Refinement (FDR) model checker. As a result, we discovered interesting things about the use of
FDR that revealed subtle points in the Simplex architecture. We also developed a WRIGHT specification of this
architecture to characterize precisely the connections between its components at the architectural level. The
specification was based on the latest version of the CSP model.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED S SAME AS RPT[] DTIC USERS I Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (include area code) 22c. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/ENS (SEI)

DD FORM 1473, 83 APR EDITION of I JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

